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Big data has become a much-used phrase in public discourse, 
optimistically as well as controversially. In more optimistic 
moments, big data heralds “a revolution that will transform 
how we live, work, and think” (Mayer-Schönberger & 
Cukier, 2013), changing the way we do business, participate 
in government, and manage our personal lives. In moments 
of anxiety, we worry about the effects upon our lives of sur-
veillance by corporations and governments (Podesta, Pritzker, 
Moniz, Holdern, & Zients, 2014). In education, we have wit-
nessed a similar range of promises and anxieties about the 
coming era of big data. On the one hand, it is claimed that big 
data promises teachers and learners a new era of personalized 
instruction, responsive formative assessment, actively 
engaged pedagogy, and collaborative learning. On the other 
hand, critics worry about issues such as student privacy, the 
effects of profiling learners, the intensification of didactic 
pedagogies, test-driven teaching, and invasive teacher-
accountability regimes. Whether one’s orientation is optimis-
tic or anxious, all agree that the changes are substantial and 
that we educators have yet barely explored the implications.

This article maps the nature and consequences of big data 
in education. We set out to provide a theoretical overview of 
new sources of evidence of learning in the era of big data in 
education, highlighting the continuities and differences 
between these sources and traditional sources, such as stan-
dardized, summative assessments. These sources also sug-
gest new kinds of research methodology that supplement 
and in some cases displace traditional observational and 
experimental processes.

We ground this overview in the field of writing because it 
offers a particularly interesting case of big data in education, 
and it happens to be the area of our own research (Cope & 
Kalantzis, 2009; Kalantzis & Cope, 2012, 2015b).1 Not only 
is writing an element of “literacy” as a discipline area in 
schools; it is also a medium of for knowledge representation, 
offering evidence of learning across a wide range of curricu-
lum areas. This evidence has greater depth than other forms of 
assessment, such item-based assessments, which elicit learner 
response in the form of right and wrong answers. Writing, in 
contrast, captures the complex epistemic performance that 
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underlies disciplinary practices. Examples of such disciplin-
ary practices that are best represented in writing include argu-
ment in science, information texts in technical subjects, 
worked examples in math, and documentation in computer 
code. Writing is also a medium for the representation of affect 
in self-reflective, metacognitive, and critical student texts. 
Most relevantly for this article, writing pushes the boundaries 
of new measurement technologies and processes, illustrating 
the range of possibilities in the collection and analysis of evi-
dence of learning in technology-mediated learning environ-
ments (Cope, Kalantzis, McCarthey, Vojak, & Kline, 2011; 
Dawson & Siemens, 2014). Writing offers us a case study of 
the range and depth of data that can be collected incidental to 
learning.

The article proceeds in four steps, each step using the 
example of writing but aiming also to make generalizations 
that go beyond writing and writing assessment. In a first 
step, we attempt to classify types of data emerging from 
technology-mediated learning environments. Second, we 
explore the ways in which these data can be used in learning 
and assessment, particularly for the purposes of formative 
assessment of writing and disciplinary learning that has been 
represented in writing. Third, we examine the ways in which 
these data expand our sources of evidence and in which big 
data and learning-analytic methods might supplement tradi-
tional quantitative and qualitative research methods. Finally, 
we consider some of the implications of these developments 
for research infrastructure, including data access, data shar-
ing, and research ethics.

To set the stage with a definition, “big data” in educa-
tion is

1. the purposeful or incidental recording of activity and 
interactions in digitally mediated, network-intercon-
nected learning environments—the volume of which 
is unprecedented in large part because the data points 
are smaller and the recording is continuous;

2. the varied types of data that are recordable and ana-
lyzable;

3. the accessibility and durability of these data, with 
potential to be (a) immediately available for forma-
tive assessment or adaptive instructional recalibra-
tion and (b) persistent for the purposes of developing 
learner profiles and longitudinal analyses; and

4. data analytics, or syntheses and presentations based 
on the particular characteristics of these data for 
learner and teacher feedback, institutional account-
ability, educational software design, learning 
resource development, and educational research.

In just a few years, two new subdisciplines of education 
have emerged to address specific questions raised by the phe-
nomenon of big data, each from a somewhat different per-
spective—educational data mining and learning analytics. 

The field of educational data mining mainly focuses on what 
we will in the next section of this article characterize as 
“unstructured data,” attempting to analyze and interpret evi-
dence of learning from large and noisy data sets—including, 
for instance, log files, keystrokes, clickstream data, and dis-
cussion threads in natural language (R. Baker & Siemens, 
2014; Castro, Vellido, Nebot, & Mugica, 2007; Siemens & 
Baker, 2013). The field of learning analytics tends to be more 
concerned with what we characterize as structured data, 
including data models that are “designed in” (Ho, 2015), as is 
the case, for instance, of intelligent tutors, games, simula-
tions, and rubric-based peer review (Bienkowski, Feng, & 
Means, 2012; Knight, Shum, & Littleton, 2013; Mislevy, 
Behrens, Dicerbo, & Levy, 2012; Pea & Jacks, 2014; Siemens 
& Baker, 2013; West, 2012). The subfields have their own 
conferences, journals, and burgeoning communities of 
designers and researchers. In practice, the fields overlap con-
siderably. So, rather than attempting to disentangle the sub-
disciplines in this article, we construe the field as a whole as 
“education data science” (Pea & Jacks, 2014).

Evidence of Learning in Computer-Mediated  
Learning Environments

In computer-mediated educational environments, evi-
dence of learning can be gleaned from a wide range of 
sources. We want to classify these sources into three major 
categories, each of which can provide data about learning to 
write and learning-in-writing across a range of discipline 
areas. These are summarized in Table 1.

Within each of these major classes of educational data, 
there are enormous variations in technology and data type. It 
has been possible to generate these kinds of data in com-
puter-mediated learning environments for some time. What 
is new is the amount of data that can be generated, the pos-
sibility that they can be generated continuously, their variety, 
and the possibility of analyzing data sets aggregated and 
integrated across varied sources.

Machine Assessment

Over the past several decades, traditional assessments 
have been transformed by computerization in two major 
areas: computer adaptive testing (CAT) in the case of select-
response tests and natural language processing for supply-
response tests, from short answers to extended essays.

CAT extends long-standing item response theory, where 
correct student response to test items varies according to 
what the student knows or understands (a latent cognitive 
trait) and the relative difficulty of the item. Computer adap-
tive tests serve students progressively harder or easier ques-
tions depending on whether they answer correctly. Such 
tests provide more accurately calibrated scores for students 
across a broader range of capacities, reach an accurate score 
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faster, and are harder to game because no two students end 
up taking quite the same test (Chang, 2015). Computer diag-
nostic testing (CDT) allows for the coding of topic areas 
within a test and disaggregation of scores within the subdo-
mains addressed within the test (Chang, 2012). In the domain 
of literacy, CAT assessments are most frequently used for 
reading comprehension—so frequently, in fact, that reading 
comprehension often becomes a proxy for literacy in gen-
eral, at the expense of writing assessments. CAT and CDT 
assessments can also be used to test specific features of writ-
ing, such as grammar and vocabulary.

These testing processes and technologies are increasingly 
embedded into pedagogical practice, for instance, in the form 
of end-of-chapter tests in e-textbooks, comprehension tests in 
online reading programs, or quizzes delivered through learn-
ing management systems (Waters, 2014; Woolf, 2010). These 
in-course tests can be used as decision points in support of 
adaptive, self-paced and personalized learning, asking and 
offering an answer to the question, “Is this student ready to 
proceed?” A single student may now answer thousands of 
such questions in a year, adding up to more test data than ever 
in the past. It is possible by this means to develop a compre-
hensive view of student progress, identifying specific areas 
of strength and weakness across a succession of interim and 
summative assessment instruments.

A new species of responsive items offers students imme-
diate feedback on questions, thus serving a formative assess-
ment function. Machine learning techniques (Chaudhri, 
Gunning, Lane, & Roschelle, 2013) can also be applied 
whereby item-based assessments improve through use. For 
instance, newly designed items—even teacher-developed 
items—that have not yet been validated can be mixed with 
well tested ones in order to determine their difficulty, and 
students could offer feedback based on their underlying 
thinking (correct thinking/wrong answer or incorrect think-
ing/correct answer may prompt reframing of the item; Cope, 
Kalantzis, McCarthey, et al., 2011). These developments 

support the “crowdsourcing” (Surowiecki, 2004) of item 
development and evaluation. Moreover, to build a compre-
hensive view of learner progress, much work is needed to 
develop ontologies (E. Baker, 2007; Cope, Kalantzis, & 
Magee, 2011) that specify the semantics of items across 
multiple assessments (what is the underlying cognitive 
trait?) and support detailed mapping of standards (precisely 
what, of the curriculum, has the student covered?).

Natural language processing technologies are today 
able to grade short-answer and essay-length supply-
response assessments with reliability equivalent to human 
graders (Burstein & Chodorow, 2003; Chung & Baker, 
2003; Cotos & Pendar, 2007; Shermis, 2014; Warschauer 
& Grimes, 2008). Perhaps the greatest obstacle to the 
assessment of writing has been the cost of human grading, 
including not only the time humans take to read student test 
scripts but also rater training and moderation to ensure 
interrater reliability. This is why item-based reading com-
prehension has until now so often been taken to be a proxy 
for literacy. Not only do the U.S. Common Core State 
Standards (CCSS) require a rebalancing of writing within 
the literacy curriculum; they also recognize the importance 
of writing across a range of curriculum areas, including 
science, social studies, and technical subjects (National 
Governors Association Center for Best Practices & Council 
of Chief State School Officers, 2010). As a consequence, 
there has been a rebalancing of pedagogical emphasis in 
literacy from a primarily receptive mode (reading), increas-
ing the relative importance of its productive mode (writ-
ing). Such rebalancing aligns with “21st-century skills” of 
active engagement, participatory citizenship, and innova-
tive creativity (Darling-Hammond & Wood, 2008; 
Partnership for 21st Century Skills, 2008). So, to develop 
more efficient and effective writing assessments is a chal-
lenge of utmost importance.

Natural language processing offers two types of tools for 
writing assessment, often used in concert with each other: 

TABLE 1
A Typology of Educational Data Sources in Computer-Mediated Learning Environments

Data type Mode of data collection Assessment genres: Examples

Machine assessments Computer adaptive testing Select response assessments, quizzes (e.g., reading 
comprehension, grammar, vocabulary)

 Natural language processing Automated essay scoring, feedback on language features
Structured, 

embedded data 
 

Procedure-defined processes Games, intelligent tutors
Argument-defined processes Rubric-based peer review of writing
Machine learning processes Semantic tagging and annotation, text visualizations, 

accepted textual change suggestions
Unstructured, 

incidental data
Incidental “data exhaust” Keystroke patterns, edit histories, clickstream and 

navigation paths, social interaction patterns
 Dedicated devices for 

collecting unstructured data
Video capture, eye trackers, movement detectors
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statistical corpus comparison and analytical text parsing 
(Cope, Kalantzis, McCarthey, et al., 2011). In the case of the 
corpus comparison, the computer is “trained” by being given 
a corpus of human-graded texts; the machine compares new 
texts and grades them based on statistical similarity with the 
human-graded texts. In the case of text parsing, computers 
are programmed to search for language features, such as 
markers of textual cohesion, the range and complexity of 
vocabulary, and latent semantics based on word clustering 
and frequencies (Crossley, Allen, Snow, & McNamara, 
2015; Landauer, McNamara, Dennis, & Kintsch, 2007; 
McNamara, Graesser, McCarthy, & Cai, 2014).

It has been shown that statistical corpus comparison gen-
erates reliable retrospective scores in summative assess-
ments (Burstein, 2009). However, its limitation is that it is 
unable to provide specific meaningful feedback, and some 
of its measures allow users to game the system. For instance, 
length of text, longer sentences, and variety of vocabulary 
have a significant impact on scores (Vojak, Kline, Cope, 
McCarthey, & Kalantzis, 2011). Textual parsing is capable 
of giving meaningful feedback, including specific sugges-
tions about language features, such as voice or simple/tech-
nical vocabulary (Bailey, Blackstock-Bernstein, Ryan, & 
Pitsoulaki, in press; Cope & Kalantzis, 2013). In context of 
big data, the potential number of noticeable language fea-
tures is as large as the complexity of language itself. The key 
to natural language processing in the context of formative 
assessment is to provide salient suggestions—to reduce big 
data, much of which may be relevant for summative analy-
sis, to data that are germane to immediate student learning. 
Emerging areas of development in machine parsing tech-
nologies include conceptual topic modeling (Li & Girju, 
2015; Paul & Girju, 2010; Riaz & Girju, 2010), mapping 
argument structures (Ascaniis, 2012) and sentiment analysis 
(Gibson & Kitto, 2015; Shum et al., 2016; Ullmann, 2015; 
Wen, Yang, & Rose, 2014).

Structured, Embedded Data

Whereas CAT and natural language processing extend 
long-standing methods of select-response and supply-
response assessment, computer-mediated learning can sup-
port the generation of innovative forms of structured data 
designed into the instructional sequence. Here we highlight 
three kinds of technology and pedagogical process: proce-
dure-defined machine response; the organization and colla-
tion of machine-mediated, argument-defined response by 
humans; and distributed machine learning.

Procedure-defined processes are well suited for highly 
structured domains where evidence of learning is to be found 
in correct and incorrect answers. Typical examples are intel-
ligent tutors, learning games, and simulations, most fre-
quently and successfully used for formally structured 
domains, such as algebra or chemistry (Koedinger, Brunskill, 

Baker, & McLaughlin, 2013). In the case of writing, proce-
dure-defined processes may be used to address relatively 
clear-cut aspects of language learning, such as phonics in 
beginning literacy, and vocabulary and language conven-
tions across a range of levels of capacities to write. Writing 
tutors can also include strategically placed formal procedure 
or game activities at different stages in the writing process, 
from outline to revision (Roscoe, Brandon, Snow, & 
McNamara, 2014; Roscoe & McNamara, 2013).

Underlying intelligent tutors, educational games, and 
simulations are cognitive models that lay out the elements of 
a target domain, anticipating a range of learning paths 
(Conrad, Clarke-Midura, & Klopfer, 2014). In these cases, 
learning analytics rely on knowledge tracing, or tracking 
learning paths. Illustrating this process, VanLehn character-
izes the inner and outer feedback loops that underlie intelli-
gent tutors: An inner loop consists of a step in the execution 
of a task, which generates a correct or incorrect response, 
feedback on that response, or in the case of expression of 
uncertainty or incorrect response, a hint. Then, in an outer 
loop, student response determines the next suitable task 
(Chi, Jordan, & VanLehn, 2014; VanLehn, 2006). To the 
extent that there may be more than one “correct” path at each 
decision point, decision trees may be complex and naviga-
tion paths varied (Y. Xu, Chang, Yuan, & Mostow, 2014). 
However the alternatives at each step are limited by the pro-
cedural nature of the domain—in the case of literacy, 
straightforward language “facts.”

Advanced developments in procedure-defined learning 
technologies include conversational tutors that use latent 
semantic analysis to “read” short written responses (Chi 
et al., 2014; Graesser, VanLehn, Rosé, Jordan, & Harter, 
2001) and automatic hint generation based on historical data 
using machine learning methods (Barnes & Stamper, 2008). 
In all of these scenarios, the bigness of the data derives from 
the large number of data points as a student progresses. 
These data points can be made semantically legible to the 
student and teacher in the form of immediate feedback. 
Across time and across many students (a class, all the users 
of the software, a demographic), the size of the data grows 
proportionately. Pedagogically significant variation between 
students also may become visible via knowledge tracing 
visualizations.

Argument-defined processes involve nonformal reasoning 
(Walton, 2008) that allows scope for a range of more or less 
plausible conclusions. This contrasts formal logic, where 
inarguably correct deductions are possible—the underlying 
logic of procedure-based digital learning environments. 
Nonformal reasoning processes are necessary for complex 
and contextually dependent matters that are potentially dis-
putable, involving human judgment and requiring a person to 
make his or her reasoning explicit while at the same time 
demonstrating awareness of other plausible reasoning 
(Brandom, 1994). Examples of nonformal reasoning include 
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supporting claims with evidence, ethical reasoning, aesthetic 
judgment, critical analysis, and self-reflection (Co. Lynch, 
Ashley, Pinkwart, & Aleven, 2009; Ullmann, 2015). 
Examples of disciplinary practice at the school level include 
scientific or historical argument, opinion texts, information 
or explanations, and narratives—to use the terminology of 
text types in the U.S. CCSS for writing (National Governors 
Association Center for Best Practices & Council of Chief 
State School Officers, 2010). In higher education, examples 
of such reasoning include clinical case analyses, legal argu-
ments, business case studies, industrial or architectural 
designs framed within an articulated program, environmental 
analyses, metacognitive self-reflections, and documentation 
of computer code or worked solutions to mathematical or sta-
tistical problems. Disputability in such domains does not 
mean that “anything goes”; rather, there is room for discus-
sion about the nature and cogency of underlying reasoning.

These processes of open-ended reasoning are ideally rep-
resented in writing—defined broadly here to capture the 
richness of multimodal knowledge representation now ubiq-
uitous in the era of digital media across a range of disci-
plines, including embedded media, such as diagrams, videos, 
data sets, and formulae (Dawson & Siemens, 2014; Kalantzis 
& Cope, 2012, 2015a). Rubric-based review is one way to 
systematize the judgment process. Long-standing scholarly 
practice has established a level of objectivity when writers 
and reviewers are anonymous (Cope & Kalantzis, 2014). 
Research shows that interrater reliability improves when cri-
teria are clearly articulated and rating levels and cut scores 
are explicitly specified. Under these conditions, mean peer 
ratings are close to expert ratings (Cope, Kalantzis, Abd-El-
Khalick, & Bagley, 2013). Peer review in massive open 
online courses is a prominent example where the judgment 
of anonymous course participants against clearly specified 
review criteria and rating levels is assumed to be equivalent 
to expert judgment (Piech et al., 2013). Using a single, 
cloud-located source, it is possible to manage what is other-
wise a difficult-to-administer process of anonymization, ran-
domization, and simultaneous review by multiple reviewers 
interacting simultaneously. Such spaces are also designed 
for the collection of quantitative and qualitative data, distri-
bution of feedback, and synthesis of results. Reviews can also 
be moderated and aggregated from multiple perspectives—
peer, self, expert/teacher—and different reviewer ratings 
calibrated. Computer-mediated review processes manage 
social complexity, including multiple reviews, multiple 
reviewer roles, multiple review criteria, quantitative rating 
plus qualitative rating, and tracking progress via version his-
tories. As a consequence of these processes of machine 
mediation, rigorous multiperspectival review becomes fea-
sible as a routine process (Abrams, 2013; Cope & Kalantzis, 
2013; Kline, Letofsky, & Woodard, 2013; Lammers, 
Magnifico, & Curwood, 2014; McCarthey, Magnifico, 
Woodard, & Kline, 2014). Every data point can be legible 

for the purposes of formative and summative assessment. 
From a formative point of view, a learner may receive mul-
tiple comments from multiple reviewers across multiple cri-
teria, every one of which is legible for the purposes of 
improving the next draft. By legible, we mean immediately 
actionable based on specific suggestions, or legible in a spe-
cific sense that an overall grade or score is not. At the same 
time, from a summative point of view, these data quickly 
become large. When aggregated, they can show individual 
learner progress from draft to draft within a project or over a 
number of projects and can offer comparisons across groups 
of students of various sizes.

Machine learning processes recruit users to provide 
structured data. Using machine learning techniques, intelli-
gent writing systems can become more accurately respon-
sive with use. Natural language—in essays, class discussion 
forums, and the like—is from a computational point of view 
unstructured data or at best lightly structured data. Language 
itself is of course highly structured, but its structures are 
only to a limited degree analyzable by computers, whose 
processes of calculation are circumscribed by a myriad of 
difficulties, including ambiguity, context dependency, and 
metaphorical association.

The question then is, how can users constantly train intel-
ligent writing systems by adding a layer of computable 
structure as they write, self-assess, and assess each other to 
the unstructured data of natural language? The answer in 
part is that it is possible in semantically aware writing envi-
ronments to tag text with machine-readable structure and 
semantics (Cope, Kalantzis, & Magee, 2011) in order to help 
computers make better sense of texts and the knowledge that 
these texts represent. Here are some examples: A heading-
level tag can identify the structure of a written text. A stu-
dent’s own writing can be distinguished from quotations by 
using a “block quote” command for the purpose of analysis 
of a student’s academic language level or plagiarism. 
Context-dependent machine annotation can add precision (I 
tagged with the name of the person, today tagged with a 
date). Semantic tagging can specify precise meanings against 
domain-specific glossaries and ontologies (E. Baker, 2007). 
The structure of text can also be mapped visually (Rekers & 
Schürr, 1997; Southavilay, Yacef, Reimann, & Calvo, 2013). 
Argument maps, for instance, might make explicit the under-
lying thinking in a text (C. F. Lynch, 2014; C. F. Lynch, 
Ashley, & Chi, 2014), such as the notions of thesis, claims, 
evidence, counterclaims, rebuttal, and conclusions articu-
lated in the CCSS and other writing standards (Cope et al., 
2013). In one example of visual markup, we have created in 
our “Scholar” environment a tool whereby students high-
light sections of information texts (readings, their own texts, 
their peers’ texts) in different colors in order to identify 
CCSS information text ideas of concept, definition, fact, 
example, and opinion. This creates nodes for a diagram 
beside the text in which they outline the structure of the 
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information presentation (Olmanson et al., 2015). Additional 
user structuring directly supports the assessment process. It 
also supports a “crowdsourced” training model where every 
piece of student markup can contribute to a collective intel-
ligence that grows with system use. For instance, when a 
peer reviewer codes as “vernacular” a certain term and sug-
gests that the author substitutes another term that the 
reviewer codes “technical,” and if the author subsequently 
accepts the reviewer’s suggestion, this may become training 
data for the system used at a later time as a suggestion, con-
firmed by reuse or discarded when the next user rejects.

Unstructured, Incidental Data

Technology-mediated learning environments, such as 
learning management systems, games, discussion boards, 
and peer-reviewed writing spaces, create large amounts of 
“data exhaust” (DiCerbo & Behrens, 2014). This can be cap-
tured and recorded in log files: time stamps, keystrokes, edit 
histories, and clickstreams that show periods of engagement, 
forms of activity, navigation paths and social interaction pat-
terns. Unstructured here means that the data are not framed 
in terms of a predetermined data model (such as an allow-
able move in a learning game or a comment against a review 
criterion in rubric) and that each data point does not have an 
immediately obvious meaning. The data points are mostly 
even smaller than embedded structured data, more numer-
ous, and inscrutable except in a larger context of aggregated 
data. To be made meaningful, the computer’s statistical pat-
tern recognition must trained by human inference—certain 
patterns of activity correlates with what a human has else-
where judged to be relative success or lack of success in 
learning. These training data may be created by experts or 
collected incidental to learner activity within a learning 
management system, for instance. In empirical practice, 
structured and unstructured data are generated simultane-
ously, and much data might be classified as semistructured.

Incidental data exhaust may be mined for patterns of 
activity that predict learning outcomes (Atzmueller, 2012). 
A particular pattern of drafting, peer interaction, and revi-
sion may predict, for instance, a high grade in a writing 
assignment. Going beyond single students, patterns of suc-
cess may be compared with classes, across demographics, 
and between teachers. These data can be used to provide 
advance warning that a student requires attention in a par-
ticular area (Cope & Kalantzis, 2015). Social interaction 
analyses (Speck et al., 2014; Wise, Zhao, & Hausknecht, 
2013; X. Xu, Murray, Woolf, & Smith, 2013), or edit histo-
ries showing relative contributions in collaborative online 
writing environments (McNely, Gestwicki, Hill, Parli-
Horne, & Johnson, 2012) may offer important predictive 
data as well as retrospective assessment data. Affective 
states that impact learning outcomes may also be detectable 
in patterns of action and interaction, including signs of 

confusion, frustration, boredom, or flow/engagement (R. 
Baker, D’Mello, Rodrigo, & Graesser, 2010; Chung, 2013; 
D’Mello, 2013; Dowell & Graesser, 2014; Fancsali, Ritter, 
Stamper, & Berman, 2014; Paquette, de Carvalho, & Baker, 
2014; Winne & Baker, 2013; Wixon et al., 2014). For such 
cognitive or affective analyses, machine learning algorithms 
use training data created by experts (a judgment that a detect-
able pattern in the data corresponds with a certain affective 
state). Alternatively, users can train the system on a continu-
ous basis in parallel structured data collection, for instance, 
in emote-aloud meters (D’Mello, 2013). Natural language 
processing methods can also be used to parse student written 
reactions for sentiment (Fancsali et al., 2014).

Dedicated devices for collecting unstructured data may 
include hardware and software to capture eye movements, 
gaze, facial expressions, body posture and gesture, in-class 
speech, and movement around the classroom (D’Mello 
et al., 2010; Grafsgaard, Wiggins, Boyer, Wiebe, & Lester, 
2014; Be. Schneider & Pea, 2014; Vatrapu, Reimann, Bull, 
& Johnson, 2013). Technologies include video capture, 
bracelets, watches, radio-frequency identification chips, 
quick-response codes, and specialized detectors that capture 
patterns of bodily movement, gesture, and person-to-person 
interaction (Lane, 2013; Lindgren & Johnson-Glenberg, 
2013). Such devices generate massive, noisy data sets the 
meaning of which requires human training. Human-
interpretable conclusions applied in training data sets are 
matched with patterns discernable in new data sets, so the 
human interpretation can presumptively be applied to the 
new data. In this supervised machine learning, labels are 
applied in advance to a range of computable patterns. 
Unsupervised machine learning works around the other way, 
clustering computable patterns and suggesting to humans 
that a human-interpretable label may be applicable to com-
monly occurring patterns. In our Scholar research and devel-
opment, we have created a tool that traces learner thinking in 
the form of a sequence of moves as users create a visualiza-
tion of the underlying logic of their information and argu-
ment texts. The question then is, what patterns of thinking 
predict successful or less successful written texts (Olmanson 
et al., 2015)?

Any and all of these data sources can provide evidence of 
learning to write and learning-in-writing across a number of 
subject areas. The challenge for the moment is that any one 
learning and assessment environment today offers only a 
subset of these opportunities. There are significant chal-
lenges to build the more comprehensive view that big data in 
education promises in theory.

Putting Big Data Evidence to Work in Learning and 
Assessment

Learning is a complex, multifaceted activity. To return to 
the example we have been using in this article, any and every 
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technology and process of educational evidence gathering 
can be applied to learning to write and to represent disciplin-
ary knowledge in writing. A number of implications for the 
future of assessment can drawn from the diverse and rich 
sources of evidence of learning to write and to learn through 
writing in technology-mediated environments. These are 
summarized in Table 2.

The “big data” we have been classifying and describing 
are bigger than older data sources only because the data 
points have become smaller and as a consequence of the 
incidental recording of learning activity. The activities of 
learning, meanwhile, are no larger and no more complex 
than they ever were. The data are bigger only as a conse-
quence of the finely grained mechanisms to collect evidence 
of learning that can be embedded within technology-medi-
ated learning environments (Thille et al., 2014). This is par-
ticularly the case for complex disciplinary performances, 
such as writing and knowledge represented in writing. We 
can now create writing environments that capture trace pat-
terns in learning events (Winne, 2014) and that collate learn-
ing process data (Knight, Shum, & Littleton, 2014). Some of 
these data points may be structured data that are semanti-
cally legible to teachers and students—the answer to a gram-
mar or vocabulary question in the case of procedure-defined 
evidence generated in tutors or games or, in the case of argu-
ment-defined evidence, a comment or rating in the case of a 
response to a criterion in a rubric by a peer. Other of the data 
points may not be so immediately legible, requiring aggre-
gation and interpretation of unstructured data, for instance, 
applying machine learning processes to predictors of suc-
cess at writing in the edit history of a wiki or blog.

The intrinsic embeddedness of these sources of evidence 
points to exciting possibilities for the more comprehensive 
realization of long-held aspirations for formative assessment 
(Airasian, Bloom, & Carroll, 1971; Black & Wiliam, 1998; 
Bloom, 1968; Shute, 2009; Wiliam, 2011), until recently a 
comparatively neglected mode of assessment compared to 
summative assessments for the purposes of institutional 
accountability (Armour-Thomas & Gordon, 2013; Gorin, 
2013; Kaestle, 2013; Ryan & Shepard, 2008; Shepard, 
2010). Computer-mediated environments can support imme-
diate machine feedback by means of natural language pro-
cessing, CAT, and procedure-based games, for instance. 
They can also offer extensive peer and teacher feedback by 
streamlining the complex social processes of machine-medi-
ated, argument-defined human feedback.

Where such feedback mechanisms are built in, the poten-
tial arises to end the historical separation of instruction and 
assessment. A myriad of small moments of learning may 
also be a moment of formative assessment. The potential 
arises for feedback that is always available on the fly. The 
feedback can be recursive in the sense that it prompts a 
response that prompts further feedback. Feedback on feed-
back (“That was helpful/not helpful”) can also produce a 

quick response. Such feedback is immediately actionable in 
specific ways. It can determine appropriate pedagogical pro-
gression for more personalized learning. These have been 
precisely the objectives we have set ourselves in research 
and development for our Scholar platform (Cope & 
Kalantzis, 2013). In this context, instruction and assessment 
are integrated (Armour-Thomas & Gordon, 2013; Cope & 
Kalantzis, 2015). In this way, pedagogical design also 
becomes “evidence-centered design” (Mislevy et al., 2012; 
Rupp, Nugent, & Nelson, 2012).

These transformations point to the emergence of records 
of evidence of learning that are more comprehensive, and 
the analytics more thorough, than legacy summative assess-
ments. Indeed, we may be able to use assessment data that 
were in the first instance formative, for summative purposes. 
In our traditional practices of learning and assessment, we 
have conceived formative and summative assessments as 
different kinds of processes, creating different kinds of data, 
in different ways, at different times and for different pur-
poses. However, today’s data-rich learning environments 
may blur the formative/summative distinction, where every 
data point in a summative perspective may already have 
served a formative purpose. The difference then is one of 
perspective rather than a fundamental distinction of assess-
ment type.

Moving from finely grained perspectives of individual 
learner progress to comparative analyses of cohorts and demo-
graphics, it is now possible to “zoom out” from specifics to 
wider views and to “zoom in” from the larger views in order to 
identify the dynamics of specific learning sequences at an indi-
vidual or group level (Worsley & Blikstein, 2014). At the most 
granular level, it is possible in our Scholar environment and 
others to see any and every semantically legible data point, 
where each such data point has been a symptomatic waypoint 
in a student’s progress map (DiCerbo & Behrens, 2014). 
Different learning paths now become visible.

In these conditions, we also witness a shift in emphasis 
from making inferences about cognition to a focus on the 
artifacts created by learners in the process of their knowl-
edge construction. The classical “assessment argument” is a 
three-cornered triangle: observation (for instance, responses 
to a bank of test items), interpretation (which and how many 
of the responses are right or wrong), and cognition (in the 
form of an inference about student understanding of the 
domain under assessment) (Pellegrino, Chudowsky, & 
Glaser, 2001). However, now we can assess the artifacts of 
knowledge making, and as process as well as product. To 
take writing, we can keep a progress record across versions, 
including, among the many other sources of evidence that 
we have discussed, clickstream-records sources that have 
been read, annotations taken and notes made, and contribu-
tions of peer reviews to the development of a text. DiCerbo 
and Behrens (2014) call this an activity paradigm in contrast 
to an item paradigm. In this scenario, learners are conceived 
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as agents who have a range of choices as they construct 
knowledge (Winne, 2006). At the completion of a writing 
project, we can assess a constructed knowledge artifact 
(Berland, Baker, & Blikstein, 2014) that is a product of com-
plex epistemic performance, a tangible outcome of disciplin-
ary practice. The integration of assessment into pedagogy in 
these ways also addresses long-standing challenges of valid-
ity (Messick, 1989) in legacy summative assessment sys-
tems. The distinction between what is being taught and what 
is being assessed is reduced or eliminated when assessment 
is designed into the learning.

Moreover, there is a shift from a focus on individual 
thinking and the recall of facts or operations. This is the tra-
ditional cognitive focus of assessment (Dixon-Román & 
Gergen, 2013). Rather than memory and isolated mental 
skill, learning analytics can now trace the learner’s synthesis 
of readily available knowledge sources and tools, and refine-
ment based on peer and teacher feedback. For instance, an 
assessment need not focus on what a learner can remember 
about climate change for a select-response science test. 
Rather, the focus is how well he or she is able to write a sci-
entific argument about climate change, having accessed 
available sources, analyzed different hypotheses, and evalu-
ated the evidence provided to support claims related to alter-
native scientific arguments. If a student’s peers have given 
him or her feedback on a draft, the social provenance of the 
student’s thinking is traceable, as are the sources he or she 
has accessed via clickstream records and has recognized in 
citations. Some of these social sources of knowledge may in 
an earlier era have been construed to be cheating. Now they 
become an integral part of the collaborative learning ecolo-
gies. These parallel the knowledge ecologies that constitute 

the practice of “real” science (Dascalu, Dessus, Bianco, 
Trausan-Matu, & Nardy, 2014; Lansiquot, 2013). Instead of 
assessing individual cognition in the form of memory and 
correct application of theorems, we now assess evidence of 
cognition in the documented social provenance of informa-
tion, the peer activities that went into the collaborative con-
struction of knowledge artifacts, and the quality of reasoning 
behind a conclusion. In other words, we are interested in 
something much deeper than whether an answer happens to 
be considered right or wrong (Cope & Kalantzis, 2015).

This is the shape of an emerging infrastructure that cap-
tures data providing evidence of learning and to represent a 
wide range of complex disciplinary understandings in com-
plex forms of knowledge representation, such as writing. All 
the pieces of such an infrastructure are already available in a 
fragmentary way, and we have brought a number of them 
together in our Scholar web writing and assessment environ-
ment (Cope & Kalantzis, 2013).

To teach and learn in such environments requires new 
professional and pedagogical sensibilities. Everyone 
becomes to some extent a data analyst—learners using 
analytics to become increasingly self-aware of their own 
learning and teachers as they acquire a level of data liter-
acy required to interpret a student’s progress and calibrate 
their instruction (Twidale, Blake, & Gant, 2013). Much 
learning will be required on the part of both students and 
teachers as they become familiar with these environments. 
Importantly also, as we will see in the next section of this 
article, these data also become rich sources for analysis by 
researchers, instructional designers, and educational soft-
ware developers in a new “education data science” (Pea & 
Jacks, 2014).

TABLE 2
Traditional Compared to Emerging Models of Assessment

Traditional assessment model Emerging assessment model

Assessment is external to learning processes; the 
challenge of “validity” or alignment of the test with 
what has been taught

Assessment is embedded in learning; “validity” no longer a 
challenge

Limited opportunities for assessment, restricted data 
sets (select and supply response assessments)

Data are big because there can be many small data points during 
the learning process (structured and unstructured data)

Conventional focus on summative assessment Renewed focus on formative assessment
Summative assessment is an outcomes or end view of 

learning
Summative assessment is a progress view, using data that were 

at first formative to trace learning progressions; feedback is 
recursive

Expert or teacher assessors Crowdsourced, moderated assessments from multiple 
perspectives, including peers and self

Focus on individual memory and deductions leading to 
correct or incorrect answers

Focus on knowledge representations and artifacts that 
acknowledge textual provenance and trace peer collaborations

Assessment of fact and correct application Assessment of complex epistemic performance, disciplinary 
practice

Assessment experts as report grades Learners and teachers as data analysts, with the support of 
analytics dashboards and visualizations
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Toward Education Data Science

At the dawn of the computer age, Warren Weaver, one of 
the founders of information theory, spoke of a coming third 
phase of science. The first phase had until about 1900 dealt 
with two-variable problems, such as the laws of Newtonian 
physics, which resulted in the great mechanical inventions 
of modern times. In a second phase, probability theory was 
used to deal with the disorganized complexities of biological 
and social realities. In a third phase, he predicted a science in 
which computers could support analysis of organized com-
plexity (Weaver, 1948). We contend that this is now becom-
ing possible in education with big data, whose evidential 
complexity lies in their fine granularity and wide variety. 
One such example of complexity, we have been arguing, is 
the process of writing and organizing disciplinary knowl-
edge in written form. How then do the big data, collected 
incidental to the learning process, allow us to see into this 
complexity? What are the implications for educational 
researchers? And what opportunities and challenges arise for 
the social sciences in general (Burrows & Savage, 2014; 
Kitchin, 2014; Savage & Burrows, 2007) as well as the 
learning sciences? Our responses to these questions follow, 
and are summarized in Table 3.

An Embedded Role for the Researcher and Distributed 
Data Collection

The traditional role of the educational researcher, particu-
larly within the experimental model, is that of an indepen-
dent observer. As a consequence, researchers design and 
implement instruments of measurement that are mostly sep-
arate from the objects being measured—surveys, tests, inter-
views, observation protocols, and the like.

However, in the case of data collected incidental to learn-
ing, the instruments of measurement are embedded in the 
learning. Some of the measurement may be done by teachers, 
peers, and the learner in his or her own self-evaluation. The 
data are collected via mechanisms that are also integral to the 
learning. The subjects are, in effect, recruited as data collec-
tors—as is the case in peer essay assessments, think-aloud 
annotations, or crowdsourced training in machine learning. In 
our research on science writing in the middle school, we have 
demonstrated that when rating-level descriptors are clear, 
mean scores of several non-expert raters are close to those of 
expert raters (Cope et al., 2013). According to a logic now 
termed the “wisdom of crowds” in online and big data con-
texts (Ranade & Varshney, 2012; Surowiecki, 2004), the 
expert human judgment of teachers or researchers can be 
meaningfully supplemented by non-expert judgments, such as 
those of students themselves (Strijbos & Sluijsmans, 2010). 
Web 2.0 technologies have demonstrated the effectiveness of 
non-expert reputational and recommendation systems (Farmer 
& Glass, 2010; O’Reilly, 2005). In these ways, the role sepa-
ration between data collector and research subject is blurred.

In this scenario, researchers need to reposition them-
selves as data collaborators—working alongside the 
instructional software designer, teacher, and learner. To the 
extent that the division of instruction and assessment is 
blurred in the era of big data, so also is the division blurred 
between the data used for pedagogy and the data used by 
researchers in the educational data sciences. And to the 
extent that formative and summative assessment becomes 
perspectives on the same data, research is also grounded in 
these data.

Sample Sizes, Where N = All and N = 1

In the standard educational research model, the ideal 
sample size is “N = just enough.” There are costs of time 
and effort in instrument development, implementation, col-
lection, and analysis. For this reason, N has to be enough to 
minimize sample error or bias while still supporting gener-
alizability. This N may be small in the case of thick qualita-
tive data or larger for quantitative analyses. However, in an 
era when data are collected incidental to learning and 
embedded assessment, there is no marginal cost in analyz-
ing data sets of any size. The possibility, in fact, arises to 
study N = all, where “all” may be every user of a piece of 
cloud software or every student in a data collection catch-
ment area. We already have whole-population or census 
data available in administrative data sets. Now we can also 
seek a more granular view of learner activity in the data 
emerging from computer-mediated learning environments. 
At the other end of the scale, with enormous amounts of 
collectable at the level of an individual student or a single 
case, N = 1 can yield reliable data, too. This means also that 
there need not be the bifurcation of sample sizes and meth-
ods that has traditionally been the mark of the qualitative/
quantitative divide. Big data can simultaneously support 
N = 1 and N = all.

Multiscalar Data Perspectives

Schools have always offered feedback at different 
scales, from immediate feedback in the form of classical 
classroom discourse—where teacher initiates, student 
responds, and teacher evaluates (Cazden, 2001)—to sum-
mative assessments (Mislevy, 2013). But these are differ-
ent kinds of feedback processes, created for different 
feedback orientations and generating different kinds of 
data that could not practicably be brought into relation with 
each other in a comprehensive view. In the case of big data, 
scaling up or down, zooming in or out, offers a range of 
viable perspectives on a shared data source—a micro-
moment of feedback in the writing process, for instance, to 
larger patterns of revision, to overall progress of a student 
or a class or cohort measured in terms of writing standards 
over a longer time frame.
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Variable Time Frames

In the standard experimental model of educational 
research, the intervention has to last long enough to demon-
strate statistically significant, overall, differential effect when 
an intervention group is measured against a comparison 
group. This takes time and costs resources, which also means 
that for practical purposes, the research process is linear: 
intervention → data collection → data analysis → conclusion 
regarding effect. More fluid models have been advocated for 
some time in the form of design experiments (Laurillard, 
2012; Schoenfeld, 2006) and microgenetic classroom 
research (Chinn, 2006). Such approaches did not until now 
bear the weight of statistical proof of effect afforded in the 
standard model. However, new possibilities emerge in the era 
of big educational data. For instance, in the case of N = all, 
experimental conditions can be engineered into everyday 
practice in the form of A/B studies (Tomkin & Charlevoix, 
2014), where “all” is divided into Group A (users working in 
a beta version that includes the proposed software revisions) 
and Group B (current software version) in order to compare 
the effects of the changes created in the A software instantia-
tion before full implementation. This is, in fact, how user 
testing occurs in “agile” software development methodolo-
gies (Martin, 2009). Such an approach contrasts with an ear-
lier generation of linear “waterfall” software development: 
specification → coding → testing → delivery. If the standard 
educational research model was best suited to evaluate 
“waterfall” development, new research methods required 
“agile” software development. In the development of our 
web-based Scholar writing and assessment environment, we 
go through a 2-week cycle of development → A/B trials → 
implementation. Virtual learning environments today are 
typically in constant development (Dede, 2015; Wolf, 2010), 

because these development methodologies emphasize rapid, 
frequent, and incremental cycles of design, testing, and 
release (Martin, 2009; Stober & Hansmann, 2009). In these 
circumstances, researchers can assume a role deeply embed-
ded in the design, implementation, and testing process, for 
instance, in micro intervention-result-redesign cycles. Not 
only are research time frames dramatically compressed; 
research becomes an integral part of an incremental and 
recursive development process. On the other hand, in this 
context, research time frames can also be dramatically 
extended. For instance, when learning data are persistent, 
longitudinal data can be explored on longer time frames than 
practicable in the traditional model, possibly extending even 
to lifelong learner models (Kay, 2008).

Dynamic and Heterogeneous Data

In the standard model of experimental educational 
research, fidelity of implementation is required. To demon-
strate an overall effect, every learner in an intervention needs 
to have the same experience in the intervention, and the 
comparison group needs to be held constant in order for the 
difference to be consistent. Measurement of effect needs to 
be standardized (Mitros, 2015). However, adaptive or per-
sonalized learning (Conati & Kardan, 2013; Graesser & 
McNamara, 2012; Koedinger et al., 2013; McNamara & 
Graesser, 2012; Wolf, 2010) has continuous recalibration 
built into it. It is nonstandardized by design. A certain kind 
of infidelity is built in. The same is true for software that 
gives teachers the scope to teach content they have devel-
oped themselves and in their own way—as opposed to faith-
fully following the designer’s script. This last scenario is 
particularly pertinent in the case with writing and writing 
assessment software, where learner outcomes are strongly 

TABLE 3
Traditional Compared to Emerging Models of Research

Traditional research model Emerging research model

Researcher as independent observer Researchers recruit subjects as data collectors, co-researchers
Optimal sample N to produce reliable results There is no marginal cost for N = all, and data are rich enough to 

support N = 1
Practical limits to research perspective determined by 

the scale of data collection
Multiscalar perspectives, from N = 1 to N = all

Fixed time frames, long enough to demonstrate overall 
effect; longitudinal analyses expensive and thus 
infrequent

Short time frames, feeding small incremental changes back 
into the learning environment; longitudinal time frames as a 
consequence of data persistence

Standardization effects (fidelity, average effect) Tracing heterogeneity in data, e.g., different paths in adaptive 
learning environments, salient activities of outliers

Causal effects: overall, for whole populations or 
population subsets

Microgenetic casual analysis, e.g., learning progressions for 
different students, differential effects traceable in varied 
learning paths

Relatively separate quantitative and qualitative research 
practices; low significance of theory in empirical 
analyses

Integration of quantitative and qualitative analyses; increasing 
importance of theory in data analyses
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related to the teacher’s writing prompts, rubrics, disciplinary 
expectations, and pedagogical framing. In the nature of this 
wave of software and instructional design, these data cannot 
be standardized and homogenized because they are by nature 
dynamic and heterogeneous. Rather than speak to average 
overall effects, we can track differential effects through big 
data techniques, such as network mapping, systems analysis, 
model tracing, diagramming, and visualization (Maroulis 
et al., 2010). Now that we can see the detail as well as the 
norm, we may gain valuable insights from outliers and edge 
cases. We may also see different processes producing differ-
ent effects for different demographic groupings.

Tracing Causal Effect

In the standard model of experimental educational 
research, causal effect can be inferred when the

difference between what would have happened to the participant in 
the treatment condition and what would have happened to the same 
participant if he or she had instead been exposed to the control 
condition. . . . Because the statistical solution to the fundamental 
problem of causal inference estimates an average effect for a 
population of participants or units, it tells us nothing about the 
causal effect for specific participants or subgroups of participants. 
(Ba. Schneider, Carnoy, Kilpatrick, Schmidt, & Shavelson, 2007, 
pp. 9, 19)

Today, it is possible to supplement these analyses to some 
extent with more detailed causal explanations using multi-
level statistical models. These can be cross-validated with 
embedded “big data” analytics. For instance, in the case of 
data collection embedded within periods of learning, it is pos-
sible to drill down to constituent data points to explore learn-
ing processes. In these ways, big data analyses can complement 
or supplement analyses of overall effects and multilevel anal-
yses with microgenetic causal analysis, allowing researchers 
to investigate the details of process and even to find things 
that may not have been anticipated within a statistically 
normed “causal black box” of overall effect (Stern et al., 2012, 
p. 7). By means of emerging tools, such as machine learning, 
neural nets, and support vector machines, educational data 
science can cross-validate multilevel experimental and mea-
surement methods, including “cross-level” interaction, that is, 
interactions between groups and individuals and micro- as 
well as macrolevel processes. This has the potential to offer 
new insights into the differences between individuals and 
similarities within subgroups, multiple causality, contributing 
factors, contingencies, nonlinear pathways, causes and effects 
that are mutually influential, and emergent patterns.

Convergence of Qualitative and Quantitative Methods, and 
Empirical and Theoretical Work

At times, discussions of big data appear to presage a 
future dominated by quantitative research and perhaps even 

an “end of theory” (Anderson, 2008) where algorithmic pro-
cesses, such as “data smashing,” will produce results that 
emerge directly from the data (Chattopadhyay & Lipson, 
2014). The reality of big data, however, is also likely to be 
one where theory is as important as ever and qualitative 
methods are needed beside quantitative. In physics, the 
Higgs Boson became visible in the mass of noisy data gener-
ated by the Large Hadron Collider only because its possibil-
ity had already been hypothesized in theoretical conjecture 
(Hey, Tansley, & Tolle, 2009). Similarly, we may find pat-
terns in big educational data only on the basis of conjectural 
logic models. Statistical patterns in machine learning data 
are to a significant extent creatures of patterns already built 
into supervised training models. In the case of unsupervised 
machine learning, the statistical patterns make sense only 
when they are given explanatory labels. For these reasons 
indeed, theory is needed more than ever to frame data mod-
els, to create ontologies that structure fields for data collec-
tion, and for model tracing. Patterns, moreover, may become 
meaningful only after drilling down to semantically legible 
data points—asking questions, such as “What was this out-
lier in fact doing?” Quantifiable judgments by self, peers, or 
teachers (an evaluative judgment in a point selected in a 
Likert scale) may be supported by qualitative justifications 
(a comment supporting that judgment). In these ways, the 
qualitative and the quantitative are productively interleaved. 
Furthermore, natural language processing technologies use 
statistical methods to parse data that have traditionally been 
regarded as qualitative par excellence. It is through these 
variously combined qualitative and quantitative methods 
that complex knowledge representations, such as those made 
in writing, become data that provide evidence of learning.

The methodological developments we have described 
here do not overturn the established practices of quantita-
tive and qualitative educational research. In some instances 
they incorporate them, reducing human effort and making 
them less expensive. At other times, they supplement and 
complement established research practices. Perhaps the 
greatest value, however, is the possibility in any particular 
case to analyze a variety of data types using a variety of 
methods, cross-validating these against each other in a more 
powerfully holistic, evidence-based repertoire of research 
practices.

Implications for Research and Data Infrastructure

So far in this article, we have explored the emergent pos-
sibilities of big data in education, and educational data sci-
ence, illustrating these with the example of writing and 
complex knowledge representations in writing. However, 
the practicalities of big data present considerable challenges 
for our research infrastructure and research dissemination 
practices. Here we mention three: data access, data models, 
and data privacy. These are summarized in Table 4. 
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Data Access and Publishing

In legacy research models, data were collected and kept 
by academicians. In the era of big data, they are found 
objects, and their owners are by and large outside of aca-
deme (Savage & Burrows, 2007). In the case of educational 
data, they are often stored in the data warehouses of com-
mercial software hosts or school administrations. This makes 
it harder to access data for research processes. In the case of 
web-based writing, environments such as Google Classroom/
Docs, blogs, and wikis now capture enormous amounts of 
student writing but thus far offer limited supports to analyze 
this writing for the purposes of pedagogy and assessment. 
Our Scholar project is one attempt to provide a more com-
prehensive range of writing assessment data.

At the knowledge dissemination end of the process, new 
opportunities as well as challenges emerge. The historical 
medium for knowledge declaration is the peer-reviewed jour-
nal article or monograph. These have typically declared sum-
mary results but not the data sets in which these results are 
grounded. Today, there is a move to publish data online 
alongside or linked to the article or monograph, often in 
repositories (Cl. Lynch, 2008; Shreeves, 2013). This opens 
the possibility of replication and comparison studies based on 
the same or parallel data sets. It also allows for deeper meta-
analyses, which until now have been able to do little more 
than report on aggregated effects (Glass, 2006; Hattie, 2009). 
In other words, meta-analyses could in future be grounded in 
underlying data and not just reported results. Of course, 
issues of data availability, replicability, and commensurable 
data models emerge, although these are not unique to big 
data. The difference is that the order of complexity in address-
ing these issues increases with data size and variability, as do 
the potential benefits to the extent that we as a profession 
manage to address these technical challenges.

Attempts are under way to create accessible, specialized 
data repositories, including the University of Illinois’ 
National Data Service or, in the case of educational data sci-
ences, the Pittsburgh Science of Learning Center’s DataShop 
initiative (Koedinger et al., 2010). In the case of writing, 
these data sets may include full text, revision histories, and 
ancillary assessment data. However, how are underlying 

data peer reviewed? How is they cited? How is the prove-
nance of data sets acknowledged, as well as representations 
of data? These are infrastructural challenges that we are only 
now beginning to address.

Data Models and Interoperability

It is one thing to make data more accessible, however 
quite another for data sets to take commensurable forms that 
will allow for replication studies or meta-analysis. How does 
one set of questions in a computer diagnostic test compare in 
difficulty and content with another set of questions in a dif-
ferent test? Which language or writing standards or objec-
tives is one set of assessable writing tasks and texts designed 
to address, compared to another set of writing tasks and texts 
in a different piece of software, or school, or subject area? 
How does the learning model in one language learning game 
map to the learning model for a different game? How do data 
generated in learning and assessment environments align 
with institutional and administrative data sets (Wagner & 
Yaskin, 2015)? Without addressing these questions, the data 
remain isolated in self-referencing islands.

These questions of data commensurability can be 
addressed by emerging methodologies for interoperability 
across data models. One approach involves creating data 
standards. In the United States, the Common Education Data 
Standards (Office of Educational Technology [OET], 2016, 
p. 60) and the Schools Interoperability Framework set stan-
dards for system-level data. Instructional Management 
Systems (IMS) and its Learning Tools Interoperability stan-
dard create a common framework for learning management 
systems and educational software. The IMS “Caliper” devel-
opment offers a more finely grained view of learning activ-
ity. In the spirit of further development in this direction, 
development of an educational data dictionary has been rec-
ommended (Woolf, 2010, p. 65), as has a notion of “open 
learning analytics” that ties together data emerging from a 
number of platforms (Siemens et al., 2011). Much work 
needs to be done to create interoperability in the area of fed-
erated data, using methods broadly known as the “semantic 
web” (Cope, Kalantzis, & Magee, 2011).

TABLE 4
Traditional Compared to Emerging Research and Data Infrastructures

Traditional infrastructure Emerging infrastructure

Journal articles and monographs summarize results Publication of full data sets
Meta-analyses are based on results as reported; few replication 

studies
Meta-analyses can mine multiple data sets; closely aligned, 

easily implemented replication studies
Divergent data models mean that it is difficult to align datasets Data standards support interoperability of data
Research ethics protocols based on consent prior to research; 

distinct research activities
The ethics of mining historical data; creating data effects by 

experimental intervention where the data collection and 
instruction are integrally related
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Data Privacy and Research Ethics

Critical issues also arise in the areas of data privacy and 
research ethics (Data Science Association, n.d.; Hammer, 
2015; OET, 2016, p. 74; Piety, 2013; Zwitter, 2014). One of 
the most celebrated early big data initiatives in the field of 
education was the $100 million inBloom educational data 
warehouse, funded by the Gates and Carnegie Foundations. 
Within a year of its launch, it had collapsed as states, dis-
tricts, teachers, and parents took fright at the prospect of 
“big data” seeing into children’s lives to determine their 
educational destinies and seeing into teachers’ lives to 
determine their professional destinies (McCambridge, 
2014). Just as predictive analytics can be used to raise one’s 
insurance premium or increase one’s chance of arrest, so 
they might be used to predetermine a child’s place in a 
learning track or a teacher’s employment prospects (Heath, 
2014; Mayer-Schönberger & Cukier, 2013, pp. 151, 160; 
Podesta et al., 2014).

When it comes to educational research, we may attempt 
to anonymize data in order to evaluate curriculum and 
schools—however, even when names are stripped out, every 
person’s data is unique and his or her profile remains visible 
in institutional data sets and on the web. With the self-same 
big data methods, identities can readily be inferred (Daries 
et al., 2014). Big data itself makes guaranteed anonymiza-
tion hard to achieve.

Then there is the interventionary, and in some senses 
inherently manipulative, nature of embedded research. 
Perhaps the most notorious instance of this was the study in 
which 700,000 Facebook users were split into A and B 
groups who were then fed different mixes of positive and 
negative posts. “Experimental Evidence of Massive-Scale 
Emotional Contagion Through Social Networks” was the 
alarming title of the subsequent paper in which the research-
ers report on the results of this experiment (Kramera, 
Guillory, & Hancock, 2014). Institutional review board 
approval for this project from Cornell University relied on 
consent via the research subjects’ Facebook user agreement 
whereby the company owns personal data and can use them 
for a wide range of purposes. The same is the case with 
much learning management and other education software, 
where users effectively consent for their learning experi-
ences to be used as data, including manipulation of those 
experiences for research and development purposes. The 
Committee on Revisions to the Common Rule for the 
Protection of Human Subjects in Research in the Behavioral 
and Social Sciences concedes that traditional consent proto-
cols are impractical in the context of big data and has recom-
mended a new category of “excused” research (National 
Research Council, 2014). If big data is not to become Big 
Brother, users need to be recruited as co-collectors, co-ana-
lyzers, co-researchers—equal parties in the data-driven deci-
sions that may today be made over their own lives (Nichols, 

Twidale, & Cunningham, 2012; Renear & Palmer, 2009; 
Wickett, Sacchi, Dubin, & Renear, 2012).

Conclusions

Discussion of “big data” in education is recent, at times 
making it sound like yet another passing educational fad. In 
this article, we have attempted to provide an overview of the 
developing scene, the continuities with traditional data 
sources and research methodologies, and a map of emerging 
potentials in the form of novel data sources and modes of 
analysis. We have focused on the example of writing in order 
to illustrate the range and complexity of data sources offer-
ing evidence of learning, not only in the subject area of lit-
eracy (writing as form) but as writing as a medium for 
knowledge representations and complex disciplinary perfor-
mance across a range of discipline areas.

As is to be seen in unfolding developments in the field of 
technology-mediated writing and writing assessment, big 
data and education data sciences may in time offer learners, 
teachers, and researchers new windows into the dynamics 
and outcomes of learning, finely grained in their detail, var-
ied in their sources and forms, and massive in their scope. 
However, much work still needs to be done in the nascent 
field of education data sciences before the affordances of 
computer-mediated learning can be fully realized in educa-
tional practice. For this reason, the case we have presented 
here is by necessity part description of an emergent reality 
and at the same time part agenda for future research and 
development. This is a journey that we have barely begun.

Note

1. U.S. Department of Education, Institute of Education 
Sciences, “The Assess-as-You-Go Writing Assistant: A Student 
Work Environment That Brings Together Formative and Summative 
Assessment” (R305A090394); “Assessing Complex Performance: 
A Postdoctoral Training Program Researching Students’ Writing 
and Assessment in Digital Workspaces” (R305B110008); “u-Learn.
net: An Anywhere/Anytime Formative Assessment and Learning 
Feedback Environment” (ED-IES-10-C-0018); “The Learning 
Element: A Lesson Planning and Curriculum Documentation Tool 
for Teachers” (ED-IES-lO-C-0021); and “InfoWriter: A Student 
Feedback and Formative Assessment Environment for Writing 
Information and Explanatory Texts” (ED-IES-13-C-0039). Bill 
and Melinda Gates Foundation, “Scholar Literacy Courseware.” 
Scholar is located at http://CGScholar.com.
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