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Sources of Evidence-of-Learning: Learning
and assessment in the era of big data
BILL COPE & MARY KALANTZIS
University of Illinios, Champaign, IL

Abstract

This article sets out to explore a shift in the sources of evidence-of-learning in the era of networked
computing. One of the key features of recent developments has been popularly characterized as ‘big
data’. We begin by examining, in general terms, the frame of reference of contemporary debates on
machine intelligence and the role of machines in supporting and extending human intelligence. We
go on to explore three kinds of application of computers to the task of providing evidence-of-learning
to students and teachers: (1) the mechanization of tests—for instance, computer adaptive testing,
and automated essay grading; (2) data mining of unstructured data—for instance, the texts of
student interaction with digital artifacts, textual interactions with each other, and body sensors;
(3) the design and analysis of mechanisms for the collection and analysis of structured data
embedded within the learning process—for instance, in learning management systems, intelligent
tutors, and simulations. A consequence of each and all of these developments is the potential to
record and analyze the ‘big data’ that is generated. The article presents both an optimistic view
of what may be possible as these technologies and pedagogies evolve, while offering cautionary
warnings about associated dangers.

Keywords: big data, assessment, machine learning, learning analytics, educational
data mining

Introduction

Since the development of the institution of modern education, the primary site for gather-
ing evidence-of-learning has been the test. The developments that we describe in this
article transform the traditional artifact of the test in contradictory ways. On the one
hand, computer-based, web-enabled testing mechanizes traditional assessment, embody-
ing its logic, intensifying its historical functions, and extending its social effects. On the
other hand, when curriculum content and student learning activities are delivered
through the medium of networked computers, there arise new potentials to mine the
unstructured ‘data exhaust’ emanating from these activities. It is also possible to design-in
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processes for the collection of structured data. These latter developments suggest a shift in
the primary site for the source of evidence-of-learning from the test to the learning process
itself. Perhaps even, some day in the not too distant future, we will no longer need tests
because the data that we have drawn from the learning process is itself sufficient evidence.

This article has several different agendas. It aims to be descriptive and analytical, devel-
oping a typology of educational data in the era of big data. It also represents a kind of advo-
cacy, proposing that we explore affordances in emerging educational technologies and new
ways of collecting and analyzing evidence-of-learning that might advance longstanding
educational objectives. How might these technologies help us address ‘wicked problems’
where we educators have perennially failed, such as to reduce the levels of educational
inequality, provide appropriate and engaging experiences for diverse populations of lear-
ners, and offer educational experiences which align in a more relevant way to people’s con-
temporary working, public and everyday cultural lives? This is also a moment in education
when novel questions are being raised in novel sites and modes of pedagogical practice.
These include, to name just a few trends, the rise of home and online schooling, massively
open online courses (MOOCs), and the informal and semi-formal learning now more per-
vasively embedded in software devices and computer-mediated workplace training.
However, we also want to avoid the implication that computers are the next cure-all in
education—where, to use Cuban’s (2001) words, we often discover that that are ‘oversold
and underused’. And indeed, the processes of applying ‘big data’ to education may raise a
whole new series of problems, intensifying old problems or creating new ones. Or they may
be used simply to replicate old pedagogies and unchanged educational and social
outcomes.

Machine Intelligence Meets Human Intelligence

‘Big data’, announces the title of a book written by two authors from the Oxford Internet
Institute, represents ‘a revolution that will transform how we live, work and think’ (Mayer-
Schönberger & Cukier, 2013). Sciences of direct observation are now being complemen-
ted or even at times replacing sciences where observations are mediated by data—in
astronomy or genomic medicine, for instance. In our everyday lives, data is pervasively col-
lected from our every computer-mediated interaction including our web searches and the
content of our emails, in order to serve us targeted advertising. Recommendation systems
use historical sales data to suggest that people who must surely be like you because they
purchased the same thing as you, purchased something else that you might also want.
Our phones ‘know’ our every contact and every geolocation, and such information may
prove of interest to the police. These big data can be put to a myriad of uses. In the
words of the subtitle of a White House report, we can use big data for the purposes of
‘seizing opportunities’ and ‘preserving values’ (Podesta, Pritzker, Moniz, Holdern, &
Zients, 2014). The ‘preserving values’ part directs our attention to the dangers of big
data, including discriminatory profiling, ‘filter bubbles’ and compromised privacy.

What then, is the nature of big data? What in general terms are the potentials of machine
intelligence and machine-augmented human intelligence? And what are the implications
for education?
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Informationalizing the Social

The phrase ‘big data’ captures the idea that a large number of our social interactions today
are ‘informationalized’—our emails, texts, tweets, Facebook posts, web navigation paths,
and web purchases, all time-stamped and often also geolocated. By ‘informationalized’ we
mean, our social interactions are created and transmitted through digital information plat-
forms, which (and this is the decisive factor) incidentally record these interactions.
Recording is easy and cheap. It happens in centralized or tightly distributed server
farms, so the data can readily be stitched together for analysis. Even though the storage
of this data is principally of short term value to users, its value to hosts centers on its ‘infor-
mationalization’ over a longer timeframe. This is why commercial platform providers will
often let us use their digital platforms for free. The informationalized data, recorded within
frameworks that are designed for analysis, are valuable to them (Kalantzis-Cope, 2010).
We users care for the recording less than they do, at least in the longer term; in fact we
mostly do not need the recordings beyond the moment of communicative interchange.
This is how they can use the data to serve advertising, do market research, or make rec-
ommendations that may draw us deeper into their platform or sell us a product.

The scale of social and behavioral data collection is enormous. Facebook’s data grows by
500 terabytes per day, including 2.7 billion ‘likes’. Wal-Mart handles one million customer
transactions per day. Google processes 20 petabytes of data per day. Two hundred and fifty
billion email messages are sent every day. From the point of the social sciences, the ‘big’
part of big data is less relevant than the differences between this data and traditional
sources of evidence. The data is comprehensive (every Facebook user, every Wal-Mart
customer). It is often complex and noisy, only small parts of which may render useful
information (Lazer et al., 2009). And in the case of social and medical data, ethical
issues of human agency and consent arise, issues which don’t present themselves when
looking for elementary particles or galaxies.

Big Data in Education

The issues raised by the use of computers in education are by no means new. The project
of using computers-in-education is now five decades old, beginning perhaps in 1959 with
the development of the PLATO learning system at the University of Illinois. Even before
then, in a 1954 article published in the Harvard Educational Review, and reprinted in a
book with the future-aspirational title, Teaching Machines and Programmed Learning, B.F.
Skinner foreshadowed the application of ‘special techniques… designed to arrange what
are called “contingencies of reinforcement”… either mechanically or electrically. An inex-
pensive device,’ Skinner announced ‘ … has already been constructed’ (Skinner, 1954/
1960, pp. 99, 109–110). The book has a future-inspiring photograph of such a machine
—not yet an electronic but mechanical, like the adding machines of the time.

More than half a century after PLATO, two developments in computing stand out: deep
network integration of digital learning environments through ‘cloud computing’, and the
generation of ‘big data’ that can be connected and analyzed across different systems. The
significance of ‘cloud computing’ (Erl, Puttini, &Mahmood, 2013) is social more than it is
technological. We characterize this as a shift from personal computing to interpersonal
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computing. From the 1980s, personal computing provided mass, domestic and workplace
access to small, relatively inexpensive computers. From the 1990s, the internet connected
these for the purposes of communications and information access. Cloud computing
moves storage and data processing off the personal computing device and into networked
server farms. In the era of personal computing, data was effectively lost to anything other
than individual access in a messy, ad hoc cacophony of files, folders, and downloaded
emails. In the era of interpersonal computing, the social relations of information and com-
munication can be systematically and consistently ordered.

This opens out the social phenomenon that is popularly characterized as ‘Web 2.0’
(O’Reilly, 2005), one aspect of which is massively integrated social media. This turns
data that was previously socially inscrutable, into socially scrutable data. By interacting
with friends using social media such as Facebook or Twitter, one is entering these provi-
ders’ data model, thereby making an unpaid contribution to that provider’s massive and
highly valuable, social intelligence. By storing your data in webmail or web word pro-
cessors, Google can know things about you that were impossible to know when you had
your files on a personal computer and downloaded your emails, and this ‘social
knowing’ has made it into a fabulously valuable advertising business.

So, our question is how could the social knowing that is possible in the era of interper-
sonal computing be applied to education? More and more learning happens in the cloud,
not in separately installed programs or work files on personal computing devices. In edu-
cation this includes: delivery of content through learning management systems; discus-
sions in web forums and social media activity streams; web writing spaces and work
portfolios; affect and behavior monitoring systems; games and simulations; formative
and summative assessments; and student information systems that include a wide
variety of data, from demographics to grades.

The idea of ‘big data’ captures the possibility of making better sense of the learning of
individuals and groups because it is now better connected within the framework of inter-
personal computing (DiCerbo & Behrens, 2014; Piety, 2013; West, 2012). It also rep-
resents a challenge. Though there is a mass of data, it is untidy, inconsistent and often
hard to read.

So, to define our key phrase: in education, ‘big data’ are: (a) the purposeful or incidental
recording of interactions in digitally-mediated, cloud-interconnected learning environ-
ments; (b) the large, varied, immediately available and persistent datasets generated; (c)
the analysis and presentation of the data generated for the purposes of learner and
teacher feedback, institutional accountability, educational software design, learning
resource development, and educational research.

Old Research Questions and New

Big data may be able to help us to address education’s ‘wicked problems’: performance
gaps which produce cycles of underachievement; cultural-racial differences in educational
experience and outcome; or the role of education in reproducing or breaking cycles of
poverty. Moreover, the very socio-technical conditions that have made big data possible,
are also sites for new educational practices that themselves urgently require research.
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Data science is uniquely positioned to examine these transformations. Its sources of evi-
dence are intrinsic to these new spaces and its innovative methods of analysis essential.

However, after half a century of application in traditional educational sites, the overall
beneficial effects of computer-mediated learning remain essentially unproven. In his exam-
ination of 76 meta-analyses of the effects of computer-assisted instruction, encompassing
4498 studies and involving four million students, John Hattie concludes that ‘there is no
necessary relation between having computers, using computers and learning outcomes’.
Nor are there changes over time in overall effect sizes, notwithstanding the increasing
sophistication of computer technologies (Hattie, 2009, pp. 220–221). Warschauer and
Matuchniak (2010) similarly conclude that technology use in school has not been proven
to improve student outcomes, thoughdifferent kinds of pedagogical applications of technol-
ogy do. More recently, in a review of technology integration of schools, Davies and West
(2014, p. 841) conclude that although ‘students… use technology to gather, organize,
analyze, and report information,… this has not dramatically improved student performance
on standardized tests’. If traditional research methods and sources of evidence have only
offered disquieting ‘not proven’ verdicts about technology use in general, the big data ana-
lyses that technology-mediated learning environments make possible may allow us to dig
deep into the specifics of what within educational technologies works, and what does not.

Specific developments in new fields of educational innovation also offer both challenges
and opportunities for gathering evidence-of-learning.Wehave seen over the past decade the
rapid growth of purely online or virtual schools, from the K-12 level to higher education
(Molnar et al., 2014). We have witnessed the emergence of massive, open, free educational
offerings, such asMOOCs (DeBoer, Ho, Stump, & Breslow, 2014; Peters & Britez, 2008).
These phenomena are intensified by the processes of blended and ubiquitous learning
(Cope&Kalantzis, 2009), and the blurring of pedagogies for in-person and remote learning
interactions, such as the ‘flipped classroom’ (Bishop & Verleger, 2013). These develop-
ments are widely regarded to be transformative, or potentially transformative.

In both online and face-to-face contexts, we have also seen the introduction of interac-
tive digital resources including games and simulations; classroom interactions via discus-
sion feeds and forums that elicit more consistent and visible participation; recursive
feedback systems which extend and in some cases transform traditional modes of formative
and summative assessment (Cope, Kalantzis, McCarthey, Vojak, & Kline, 2011; DiCerbo
& Behrens, 2014; Mislevy, Almond, & Lukas, 2004; Quellmalz & Pellegrino, 2009); and
adaptive, personalized or differentiated instruction which calibrates learning to individual
needs (Conati & Kardan, 2013; Shute & Zapata-Rivera, 2012; Walkington, 2013; Wolf,
2010). Such models and processes of instructional delivery are variously labeled ‘construc-
tivist’, ‘connectivist’ or ‘reflexive’ (Kalantzis & Cope, 2012; Siemens, 2005). Such innova-
tive pedagogical frameworks for learning are posited to be peculiar to, or at least facilitated
by, technology-mediated learning. Big data analyses will help us determine which pedago-
gies have what effects and how they have these effects.

Machine-augmented Learning and Machine Learning

To what extent and in what ways can machines support learning? Since the beginning of
computing, questions have been raised about the intelligence of the machines and their
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potential role of supporting human learning. Can they be helpful to learners because they
can be smart like a teacher? Can they give feedback the way a teacher would? These ques-
tions require a response that addresses the larger question of the nature of ‘artificial intelli-
gence’ (AI). And can computers learn from their own data, in order to help human
learning? This question addresses a phenomenon now framed as ‘machine learning’.

The question of AI was famously posed in the form of a test by one of the founders of
digital computing, Alan Turing. In his proposed test, a computer and a person is each
hidden behind a screen, and another person is asking them questions via a teletype
machine so the source of the answers is indistinguishable. If the person asking the ques-
tions cannot tell the difference between a human and a machine response to a question,
then the machine may be taken to exhibit AI.

Digital computers can be constructed, and indeed have been constructed…

that… can in fact mimic the actions of a human computer very closely.… If
one wants to make a machine mimic the behaviour of the human computer in
some complex operation one has to ask him how it is done, and then translate
the answer into the form of an instruction table. Constructing instruction
tables is usually described as ‘programming.’ To ‘programme a machine to
carry out the operation A’ means to put the appropriate instruction table into
the machine so that it will do A. (Turing, 1950)

John Searle’s response is that this is not AI at all, or at least not something that the propo-
nents of what he labels a ‘strong AI’ hypothesis would claim. Computers cannot think, he
says. He sets out to disprove the Turing thesis with a hypothetical Chinese room. Behind
the screen is a person who knows Chinese and a computer that can give the correct answer
to the meaning of the Chinese character by using look-up tables. Just because the answer is
correct, does not mean that the computer understands Chinese (Searle, 1980). His con-
clusion: ‘in the literal, real, observer-independent sense in which humans compute, mech-
anical computers do not compute. They go through a set of transitions in electronic states
that we can interpret computationally’ (Searle, 2014).

To Searle, Stevan Harnad responds that computers set out to do no more than simulate
or model patterns in the world in a way that records and represents, in increasingly smart
ways, human knowledge and pattern-making (Harnad, 1989). Daniel Dennett says that
Searle over-interprets and so misunderstands the Turing test, which is not about
human-like thinking, but thinking which can be made to seem human-like, hence the
aura of façade in all AI programs (Dennett, 1998). On our iPhones, Siri seems smart
because, if our question is sufficiently predictable, she seems to recognize what we are
asking her. She can look things up on the internet to give you an answer, and she can cal-
culate things. Siri is in fact a recording of the voice of a woman named Susan Bennett who
lives in Atlanta, Georgia. So the intelligence of our devices is no more than what Turing
calls an ‘imitation game’, a piece of trickery by means of which we anthropomorphize
the machine. How smart is the machine? Siri is smart enough to have a recording of a
huge amount of human data at her finger tips per medium of the internet—the address
of a restaurant, what the weather is forecast to be at 3:00 p.m., the year of the French Revo-
lution. She has been programmed to answer many kinds of question and to look up many
kinds of things and make numerical calculations. She has also been programmed to give
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funny answers to insults. This is how our phones pass the Turing test every day if the test is
seen to be no more than an imitation game. Computers fail this test to the extent that
passing the test is a failure of credulity.

Computers in education, can be this smart: they can assess whether an answer to a ques-
tion is right or wrong, because they have been programmed to ‘know’ the answer (for
instance, computerized, select response tests). They can anticipate a range of sequences
of learning and feedback which have been programmed into them (for instance, in an intel-
ligent tutor). They can grade a text by comparing it with other texts that have already been
graded by humans (automated essay scoring). They are alternately not very smart and very
smart. They are not very smart in the sense that they can only repeat answers and
sequences that have already been programmed into them by humans. But they are
smart to the extent that they record and deliver already-recorded information and patterns
of human action.

In this regard, computers are merely an extension of the knowledge architectures of
writing. They make them more efficient by mechanizing parts of the reading path.
Instead of looking up an answer to check whether it is correct (via tables of contents,
indexes or lists of answers to questions in a book, printed upside down to help you
resist the temptation of looking up the answer prematurely), they look it up for you—as
long as the question and answer have been written up by humans in advance. Just as a
thousand people could read a book, a thousand people can have an answer asked of
them by the computer, and their answer checked. The machine is smart because it has
been programmed by a human, in much the same way that a book is smart because it
has been written by a human. Books are smart, and computers are smart in the same
way—only mechanically more efficient. The smartest thing about computers, perhaps, is
their ‘imitation game’, the way they have been designed to seem smart. It is not just the
anthropomorphized interfaces (Siri’s voice or responsive avatars), but the text on the
screen that says things to the learner, or tells them with a nicely presented alert when
their answers are right or wrong.

Computers can also be intelligent in another way. Not only repeating things they have
been programmed to say, to a limited degree they can also learn. This aspect of AI is
called ‘machine learning’. Thismeans that themachine can learn from the data that it is pre-
sented. In fact, this is a process of finding statistical patterns in meanings that can be rep-
resented using numerical tokens. In supervised machine learning, computer interaction
(an action sequence in an intelligent tutor, the words typed in an essay) that has been attrib-
uted a value by a human (an affective judgment such as ‘engagement’, or a grade) is com-
pared statistically with a new pattern of interaction or text. If similar, the human
judgment is attributed by the machine to the new activity or text. Unsupervised machine
learning presents the person with statistically significant patterns, and asks them to attribute
a meaning. The machine may then record the conclusion, thereby adding to its apparent
smarts. But the computer is still essentially no more than a recording machine and a calcu-
latingmachine.However, as wewill see in the sections that follow, thesemere recording and
calculatingmachinesmight be very helpful to learners to the extent that they record and cal-
culate data types that have been construed by humans to be evidence-of-learning.

The typology that follows in the next sections of this article are designed to capture the
principal educational data types: (1) mechanized tests; (2) minable unstructured data; (3)
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structured data where learning analytics tools have been designed into the learning activi-
ties. However, in the nature of typologies, the realities are more complex. Different data
types overlap—the one data collection environment often contains a variety of data
types. The experience of a whole day in a school with one-to-one computer access may
draw learners past quite a few of these data types.

The Mechanization of Tests

Traditionally, tests have taken two main forms: select-response tests, and supply response
tests. Select response tests can be mechanized and enhanced with a new generation of
survey-psychometric systems. Supply response assessments can be mechanized with auto-
mated essay scoring using natural language processing technologies.

Survey-psychometric Systems

Frequently located within or alongside learning management systems, selected response
assessments rely upon long-established traditions of what we would term survey psycho-
metrics. We use this phrase to describe a method of asking symptomatic survey questions
aimed to elicit the extent of a student’s knowledge of a topic. If we ask you a certain
number of questions about a topic, and you get a certain number of them right, we can
come to the conclusion that you understand this topic. The general ‘assessment argument’
(Pellegrino, Chudowsky, & Glaser, 2001) underlying survey psychometrics requires: an
observational opportunity by requiring examinees to respond to a series of test items
that validly samples a curriculum; an interpretation process which makes sense of individ-
ual and cohort scores; and inferences about cognition based on these interpretations. This
is the process used by latent-variable psychometric models, and various accompanying
statistical techniques. Computer technologies have revolutionized pencil-and-paper
‘bubble tests’. Computer Adaptive Tests (CATs) tailor the test to the trait level of the
person taking the test. They differentiate subset areas of knowledge within a test
(Chang, 2012, 2015). It is possible to embed such tests within instruction, offering
immediate answers to students, and so to move away from the ‘Teach/Stop/Test’
routine of conventional, summative assessment (Woolf, 2010). Such is the project of com-
panies like Knewton, who are working with publishers to embed adaptive tests into text-
books (Waters, 2014). Or, the other way around, questions and responses to questions
can be used to direct you to places in a textbook (Chaudhri et al., 2013a). Advanced appli-
cations of these technologies include machine learning environments in which difficulty
ranking of selected response items is crowdsourced based on patterns of response to par-
ticular questions in relation to student profiles (Segal, Katzir, Gal, Shani, & Shapira,
2014).

Natural Language Processors

Technologies of automated writing assessment have been shown to be able to grade essays
to a degree of reliability that is equivalent to trained human raters (Burstein & Chodorow,
2003; Chung & Baker, 2003; Cotos & Pendar, 2007; Shermis, 2014). Thus far, these
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technologies have been less successful in providing meaningful feedback to writers beyond
the mechanics of spelling in grammar (McNamara, Graesser, McCarthy, & Cai, 2014;
Vojak, Kline, Cope, McCarthey, & Kalantzis, 2011; Warschauer & Grimes, 2008),
although increasingly sophisticated technologies for formative assessment of writing are
in development (Cope & Kalantzis, 2013; Roscoe & McNamara, 2013). So-called
natural language processing technologies offer two quite different mechanisms of analysis.
One is rule-based analytics of which grammar and spell checkers are canonical examples.
The second is the application of and statistical methods of corpus comparison for the pur-
poses of grading (for instance, a new essay with this grade is statistically similar to another
essay that a human grader has rated at a certain level) and latent semantic analysis (for
instance, where the meanings of homonyms disambiguated or synonyms are aligned)
(Landauer, McNamara, Dennis, & Kintsch, 2007; McNamara et al., 2014; Vojak et al.,
2011). Other areas of development include analyses of conceptual structures or topic
models in written texts (Paul & Girju, 2010), argument (Ascaniis, 2012), and sentiment
analysis, in discussion forums for instance (Wen, Yang, & Rose, 2014).

Unstructured Data and Educational Data Mining

To mechanize the test is to make more efficient the canonical processes for eliciting evi-
dence-of-learning. This may well generate big data in the form of answers by large
numbers of students and to innumerable questions, or huge corpora of student texts
which can be used via machine learning techniques to improve automated essay scoring.
However, the remaining two of our three data types are endemic to the regime of big
data: the analysis of unstructured data where there is no predefined data model; and the
generation of structured data embedded within learning.

Studentswork in a learningmanagement system; theywrite their assignments in anonline
writing and assessment space; they play an educational game; they interactwith eachother in
discussion boards. Along the way, they leave trace data that is recorded in log files: key-
strokes, edit histories, time stamps, clickstreams,webnavigationpaths, social network inter-
actions, or eye tracking and body movement data. The subdiscipline of educational data
mining has emerged, one of whose primary aims is to mine this ‘data exhaust’, with a
view to separating the signal from the noise (Baker & Siemens, 2014; Castro, Vellido,
Nebot, &Mugica 2007; Siemens &Baker, 2013). It aims to ask questions such as, what pat-
terns of action visible in the data predict relative success or failure?

Here we will take several potential sources of unstructured data: learning games, social
interaction analyses, affect meters, and body sensors.

Learning Games

This computer game genre was first developed in the PLATO computer learning system
at the University of Illinois in the 1960s—a salutary story, that computer games were first
created in an e-learning system, because now we are trying to bring them back into edu-
cational settings where they began. Video games were massively popularized with the rise
of personal computing in the 1980s, and today reach an audience larger than Holly-
wood. The question educators have been attempting to address is how can we bring
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the medium and levels of engagement of games to education through the ‘gamification’
of learning (Gee, 2005; Magnifico, Olmanson, & Cope, 2013)? James Gee identifies 36
learning principles that are intrinsic to most video games, even first person shooter
games, many of which are absent or at best weakly present in what he characterizes as
‘traditional schooling’ (Gee, 2004). From the perspective of educational data mining,
each one of these principles reflects a possible moment of machine-mediated reflexive
data collection; each is a recordable teaching moment—either in the form of the unstruc-
tured data generated, or records of learning that might also be structured into the game.
We will highlight just a few—Principle 11: intrinsic rewards are reflected in staged
achievement levels; Principle 16: there are multiple ways to make move forward; Prin-
ciple 21: thinking and problem solving are stored in object-representations; Principle
24: learning situations are ordered such that earlier generalizations are incrementally
fruitful for later, more complex cases; Principle 28: learners can experiment and discover
(Gee, 2003, pp. 203–210). Every move leaves a recorded trace of thinking, a trace of
deep significance. These data are massive and complex, in the case of one user,
let alone many. Our challenge is to use these data which are intrinsic to the recursivity
(and fun!) of games, not just to drive the logic of the game, but also as sources of evi-
dence of learning. Such data might also be used to support the creation of better edu-
cational games (Mislevy et al., 2014).

Social Interaction Analyses

Online learning spaces frequently support various forms of peer interaction. One such
form of interaction is online discussion forums. These present as unstructured data. Pat-
terns of peer interaction can be mapped—who is participating, with whom, to what extent
(Speck et al., 2014; Wise, Zhao, & Hausknecht 2013). Natural language processing
methods can be used to parse the content of interactions (Xu, Murray, Woolf, & Smith,
2013). Online learning environments can also support computer-supported collaborative
learning that aligns with what is frequently labeled as twenty-first century knowledge work,
which characteristically is distributed, multidisciplinary and team-based (Liddo, Shum,
Quinto, Bachler, & Cannavacciuolo, 2011; Strijbos, 2011). Learners may be provided
with different information and conceptual tools, or bring different perspectives to solve
a problem collectively that none could solve alone. Such environments generate a huge
amount of data, the product of which is a collectively created artifact or solution that
cannot be ascribed to individual cognition (Bull & Vatrapu, 2011; Perera, Kay, Koprinska,
Yacef, & Zaiane, 2009). The processes of collecting and analyzing such data have been
termed ‘social learning analytics’ (Ferguson & Shum, 2012).

Affect Meters

Motivation and affect are key factors in learning (Magnifico et al., 2013). Log files can
provide indirect evidence of patterns of engagement, or more specific information such
as the extent to which a learner relies on help offered within the environment (Rebol-
ledo-Mendez, Boulay, Luckin, & Benitez-Guerrero, 2013). In the context of social
learning, web reputation technologies (Farmer & Glass, 2010) can be applied to a
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spectrum of behaviors, ranging from helpfulness meters, offering feedback on feedback,
to flagging inappropriate comments and potential cyberbullying (Espelage, Holt, &
Henkel, 2003). Computer-mediated learning environments can monitor student senti-
ments with affect meters of one kind or another, collecting structured as well as unstruc-
tured data: emote-aloud meters and self-reports on affective states that address a range
of feelings, including, for instance, boredom, confusion, interest, delight, fear, anxiety,
satisfaction, frustration (Baker, D’Mello, Rodrigo, & Graesser, 2010; Chung, 2013;
D’Mello, 2013; Fancsali, Ritter, Stamper, & Berman, 2014; Winne & Baker, 2013;
Wixon et al., 2014).

Body Sensors

Body sensors can also be used to measure affect, as well as patterns of engagement in e-
learning environments. Connected to screen work, these may include eye tracking, body
posture, facial features, and mutual gaze (D’Mello et al., 2010; Grafsgaard, Wiggins,
Boyer, Wiebe, & Lester, 2014; Schneider & Pea, 2014; Vatrapu, Reimann, Bull, &
Johnson, 2013). Student movement not connected with screen presentations include
wearable technologies such as bracelets (Woolf, 2010, p. 19), radio-frequency identifi-
cation (RFID) chips in student identification (ID) cards (Kravets, 2012), group inter-
actions in multi-tabletop environments (Martinez-Maldonado, Yacef, & Kay, 2013), the
‘internet of things’ and the quantified self-carried in phones and watches (Swan, 2012),
and detectors that capture patterns of bodily movement, gesture and person-to-person
interaction (Lindgren & Johnson-Glenberg, 2013).

Structured Data, Embedded Data Collection and Learning Analytics

Both computerized testing and educational data mining are primarily designed to provide
evidence-of-learning after the fact. However, computer mediated learning environments
can also have, embedded within them, structured data collection. This has become one
of the main areas of interest for another subdiscipline of education, learning analytics
(Bienkowski, Feng, & Means, 2012; Knight, Shum, & Littleton, 2013; Mislevy,
Behrens, Dicerbo, & Levy, 2012; Siemens & Baker, 2013; West, 2012).

Embedding mechanisms to collect evidence-of-learning within computer mediated
learning environments has a number of advantages. The data is self-describing, less
open than mining of unstructured data to conjectures based on correlations of statistically
identifiable patterns activity with judgments of ‘training data’ made by humans. It is
semantically legible, which means that every constituent datapoint is explicable, for
instance a qualitative comment by a peer against a review criterion, a language suggestion
made by the machine, an annotation made by a peer, an answer to a question, or a step in a
learning sequence in an intelligent tutor. Every datapoint has the potential to offer immedi-
ately actionable feedback, in other words formative assessment. When such modes of
assessment are embedded into digital learning environments—learning management
systems, intelligent tutors or writing environments, for instance—there is the potential
to generate huge amounts of structured data offering evidence of learning for individuals
and cohorts, in any moment as well as progress views over time.
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Intelligent tutors, simulations, semantic mapping tools and learning management
systems are all capable of incorporating embedded and formative assessment, and conse-
quentially capturing structured data for evidence-of-learning.

Intelligent Tutors

Intelligent tutoring systems guide a learner through a body of knowledge, serving content,
requesting responses, making hints, offering feedback on these responses, and designing
stepwise progression through a domain depending on the nature of these responses
(Aleven, Beal, & Graesser, 2013; Chaudhri et al., 2013b; Vanlehn, 2006). A wrong
move in solving a problemmight produce an opportunity for further revision; a correct sol-
ution might mean that a learner can progress onto a more complex problem or a new topic.
In this way, a recursive data collection process is built into the tutor. This is the basis for the
learner-adaptive flexibility and personalized learning progressions offered by such systems
(Koedinger, Brunskill, Baker, & McLaughlin, 2013; Woolf, 2010). Intelligent tutors work
best in problem domains where highly structured progressions are possible, such as math-
ematics. They are less applicable in areas where progression cannot readily be assembled
into a linear sequence of knowledge components (Graesser, VanLehn, Rosé, Jordan, &
Harter, 2001).

Simulations

Simulations share a close family resemblance with games, however whereas games are fic-
tional spaces with predetermined rules, a player or players in highly structured roles, strict
and competitive scoring structures and a predetermined range of outcomes, simulations
model the empirical world, with few rules, little or no competitive scoring and open-
ended outcomes (Sauvé, Renaud, Kaufman, & Marquis, 2007). Learners might work
their way through simulations, in which models are presented in partial scaffolds, but
there is latitude for each participant to explore alternatives and do their own modeling
(Blumschein, Hung, Jonassen, & Strobel, 2009). The key feature of simulations is their
direct reference to the empirical world, either presenting empirical data or eliciting new
data. The distinctive reference points for learning in this data type are empirical evidence,
navigation paths taken, and the models created in the play between simulation and user.
Simulations afford possibilities for assessment that transcend traditional tests (Clarke-
Midura & Dede, 2010).

Semantic Mapping

A concept or information map is a spatial array that represents the component parts of
knowledge (facts, concepts) as nodes, connecting these via directional links that specify
the relation between nodes (Novak & Cañas, 2008; Tergan, 2005). Mind or concept
mapping or advanced organizers were introduced from educational psychology in the
1960s, with the aim of aiding the cognitive process of ‘subsumption,’ in which new
ideas reorganize existing schema (Ausubel, 1963, 1978; Ausubel, Novak, & Hanesian,
1978). Numerous educational technology tools have been developed that employ
concept mapping, from hypertext stacks, when concept mapping was first introduced to
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computer-mediated learning, to more recent e-learning software systems that support
‘mind mapping’ (Bredeweg et al., 2013; Cañas et al., 2004; Chang, Sung, & Lee, 2003;
Kao, Chen, & Sun, 2010; Liu, 2002; Su & Wang, 2010; Tzeng, 2005). The authors of
this article have developed one such tool, InfoWriter, in which learners during their
writing highlight and diagram the ideas that the writing represents (Olmanson et al., sub-
mitted for publication). It is also possible to machine-generate semantic maps from text
using natural language processing methods (Girju, Badulescu, & Moldovan, 2006).

Analytics Tools in Learning Management Systems

Comprehensive learning management systems—for instance Blackboard, Desire2Learn,
Canvas and Coursera—have the potential to generate large amounts of both structured
and unstructured data. In the collection of structured data, these systems can and often
do include student demographic data, courses taken, media accessed, discussion areas
joined, assignments given, files uploaded, and grades assigned. In the collection of
unstructured data, these systems can collect login timestamps, keystroke data, and click-
stream data. These unstructured data are of no particular significance until they are syn-
thesized and presented as indicators of levels of student engagement, records of progress
and predictors of performance. Learning analytics dashboards present their readings of
this structured and unstructured data on a per student, per course and whole-institution
implementation levels.

Changing the Sources of Evidence-of-Learning

Computer-mediated learning environments have the potential to generate huge amounts
of data, from varied data sources, and representing different data types. It is not the bigness
that makes big data interestingly different from data generally. Libraries have always
managed a lot of data. Personal computers and standalone mainframes have long
managed a lot of data. We want to conclude now by highlighting some shifts that are rel-
evant to the field of education in the era of big data: the sites of data collection, the size of
the datapoints, the objects of measurement, the role of the machine, and the responsibil-
ities of the data analyst.

The Sites of Data Collection

As we have seen, the collection of evidence-of-learning can now be embedded within
learning—to the extent even that we may have such a comprehensive data source that
we no longer need conventional tests. Even the latest extensions of traditional testing pro-
cesses—select and supply-response assessments—can be embedded within learning, so
becoming a more constructive part of the learning process than when their view is
purely retrospective. Select response assessments can and sometimes do also provide
immediate answers. By this means, answering the question is at once a data collection
point and a learning experience.

These embedded datapoints might be small—a tiny piece of feedback for a learner, or
a decision point about the next step in learning for an individual student in a
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personalized learning environment. Or they may be aggregated to a higher level for the
purposes of learner profiling when teacher and student are working on the co-design of
individual learning programs. Or at a whole class, cohort, specific demographic, or
school level, they may be to generate data for the purposes of administrative
accountability.

In this regard, learning-embedded assessment may spell the practical end of the distinc-
tion between formative and summative assessment (Cope & Kalantzis, in press). Forma-
tive assessment is assessment during and for learning, providing feedback to learners and
their teachers which enhances their learning. Summative assessment is retrospective
assessment of learning, typically a test at the end of a unit of work, a period of time, or a
component of a program. This distinction was first named by Michael Scriven in 1967
to describe educational evaluation, then applied by Benjamin Bloom to assessment of
learning (Airasian, Bloom, & Carroll, 1971; Bloom, 1968). The subsequent literature
on formative assessment has consistently argued for its effectiveness (Baker, 2007; Bass
& Glaser, 2004; Black & Wiliam, 1998; Nicol & Macfarlane-Dick, 2006; OECD Centre
for Educational Research and Innovation, 2005; Pellegrino et al., 2001; Shepard, 2008;
Wiliam, 2011). There have also been frequent laments that formative assessment has
been neglected in the face of the rise of standardized, summative assessments as an instru-
ment of institutional accountability (Armour-Thomas & Gordon, 2013; Gorin, 2013;
Kaestle, 2013; Ryan & Shepard, 2008).

However, the modes of embedded assessment enabled by computer-mediated learning,
may reverse this imbalance (Behrens & DiCerbo, 2013; Knight, Shum, & Littleton, 2013;
Pea, 2014). Indeed, it is conceivable that summative assessments could be abandoned, and
even the distinction between formative and summative assessment. In a situation where
data collection has been embedded within the learner’s workspace, it is possible to track
back over every contributory learning-action, to trace the microdynamics of the learning
process, and analyze the shape and provenance of learning artifacts. Learning analytic
and data mining processes can be used to produce progress generalizations at different
levels of granularity. At the same time, it may always be possible to drill down to specific
programs, learners, all the way to every and any of the datapoints upon which these gen-
eralizations are based.

Under these conditions of learning, all our assessment would be formative, and sum-
mative assessment simply a retrospective perspective on the same data. Such learning
environments, where the distinctions between instruction and assessment are so
blurred (Armour-Thomas & Gordon, 2013), might require that we move away from
the old assessment terminology, with all its connotative baggage. Perhaps a notion of
‘reflexive pedagogy’ might replace the traditional instruction/assessment dualism. And,
instead of formative and summative assessment as different collection modes, designed
differently for different purposes, we may need a language of ‘prospective learning ana-
lytics’, and ‘retrospective learning analytics’, which are not different kinds of data but
different perspectives and different uses for a new species of data framed to support
both prospective and retrospective views. One example: the criteria and level descrip-
tions in a rubric are spelt out differently when they have a prospective/constructive
rather than retrospective/judgmental, though the learning objective remains the same
(Cope & Kalantzis, 2013).
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The Size of the Datapoints

Just as significant as the bigness of big educational data is the smallness of its constituent data-
points. Indeed, this the only (both incidental and consequential) reason why the data have
become bigger. Small might mean an answer to a question, a move in a simulation, or a
comment in a thread in a discussion board. Smaller still might be a keystroke, a timestamp,
a click in a navigation path, or a change captured in the edit history of a wiki or blog. Learning
has not become bigger. It is just that the things we can record incidental to the learning
process have become smaller, and these add up to a lot more data than we have ever had
before—more data than a human can deal with, without computer-synthesized analytics.

The Object of Measurement

The evidentiary focus of traditional assessment, and also many of the new generation of
learning analytics tools, is that elusive object, cognition—the ‘theta’ of latent cognitive
traits in item response theory (Mislevy, 2013), or the ‘g’ of intelligence in IQ tests. Classical
testing logic runs along these lines: cognition developed in learning => observation in a test
=> interpretation of the test results as evidence of cognition (Pellegrino et al., 2001). The
test was a separate object, located after learning and supporting a retrospective interpret-
ation. However, when the focus is on knowledge artifacts, we have direct observation of dis-
ciplinary knowledge practice as-it-happens. Knowledge is assessable in the form of its
representation in the artifacts of disciplinary practice and the processes of their construction
(Knight et al., 2013). Now we have the basis for a less mediated interpretation of learning.

As a consequence, in the era of digital we do not need to be so conjectural in our eviden-
tiary arguments. We do not need to look for anything latent when we have captured so
much evidence in readily analyzable form about the concrete products of complex knowl-
edge work, as well as a record of all the steps undertaken in the creation of these products.
The focus of our attention to evidence-of-learning in the era of machine-mediated learning
can now turn to authentic knowledge artifacts, and the running record that learners create
in their practice of the discipline as they create these artifacts. Our focus for analysis, in
other words, is not on things that students can think, but the knowledge representations
that they make. These artifacts constitute evidence of complex epistemic performance—
a report on a science experiment, an information report on a phenomenon in the
human or social world, a history essay, an artwork with exegesis, a video story, a business
case study, a documented invention or design of an object, a worked mathematical or stat-
istical example, a field study report, or executable computer code with user stories. The
artifact is identifiable, assessable, measurable. Its provenance is verifiable. Every step in
the process of its construction can be traced. The tools of measurement are expanded—
natural language processing, time-on-task, peer- and self-review, peer annotations, edit
histories, and navigation paths through sources, to name a few. In these ways, the range
of collectable data surrounding the knowledge work is hugely expanded.

Raising our evidentiary expectations, how then can educators come to conclusions
about dimensions of learning as complex as mastery of disciplinary practices, complex
epistemic performances, collaborative knowledge work and multimodal knowledge rep-
resentations (Behrens & DiCerbo, 2013; Berland, Baker, & Blikstein, 2014; DiCerbo &
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Behrens, 2014; Winne, 2014)? The answer, we suggest, lies in a shift to richer data
environments and more sophisticated analytical tools, many of which can be pre-emptively
designed into the learning environment itself, a process of ‘evidence-centered design’
(Mislevy et al., 2012; Rupp, Nugent, & Nelson, 2012).

In these ways, artifacts and the processes of their making may offer sufficient evidence of
knowledge actions, the doing that reflects the thinking, and practical results of that think-
ing in the form of knowledge representations. As we have so many tools to measure these
artifacts and their processes of construction in the era of big data, we can safely leave the
measurement at that. Learning analytics may shift the focus of our evidentiary work in edu-
cation, to some degree at least, from cognitive inferences to tangible knowledge represen-
tations. We might name as a shift in focus from the cognitive to the ‘artifactual’. Where the
cognitive can be no more than putative knowledge, the artifactual is a concretely rep-
resented knowledge and its antecedent knowledge processes. We call this ‘ergative’ or
work-oriented pedagogy and assessment, in contrast to constructivist or cognitively-
oriented pedagogy and assessment (Cope & Kalantzis, in press).

The Role of the Machine

Big data is not simply machine generated, despite the apparent intelligence expressed
through the anthropomorphized user interfaces. Having dismissed the Turing test,
Searle concedes to the helpful pragmatics of a ‘weak AI’ theses. The computer is an artifice
of human communication, an extension of older textual architectures, and significant
extension nevertheless, if not the qualitative leap that its most enthusiastic advocates
would have us believe. It is a cognitive prosthesis, an extension of the social mind, and
as such part of a continuous history that begins with writing and later becomes books
and schools. To give an example, in the era of big data, human intelligence can be magni-
fied through the collection and calculation of ‘crowdsourced’ (Surowiecki, 2004) human
judgments. Millions of tiny human events are recorded at datapoints that can be aggre-
gated. Take natural language: one student recommends a wording change in the context
of a whole text and codes the reason; another accepts the change. In this scenario, a
‘machine learning’ algorithm has collected one tiny but highly meaningful piece of evi-
dence. It happens again, with one and then many other students. The more it happens,
the more powerful the evidence becomes. Aggregated to the thousands or millions, these
data provide crucial evidence for teachers, educational program designers or researchers.
We can also use these data to make proactive writing recommendations to future learners,
or formative assessment (Cope et al., 2011). Themachines seem intelligent, and they are to
the extent that they have collected and calculated the significance of a lot of human intelli-
gence, just as books and libraries and teachers have in the past—except using more data
than human teachers or learners could ever have done. Computers are only smart to the
extent that they are machines that record and externalize human thinking.

The Responsibilities of the Data Analyst

Everyone is a data analyst now. The teacher accesses the data to know their learners and
recalibrate their teaching. In this evidentiary environment, the teacher can be, should be,
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positioned as researcher. This may demand of them a new kind of data literacy. As these
platforms and environments all generate large amounts of data, what follows are expec-
tations that teachers become data literate (Twidale, Blake, & Gant, 2013), in support of
processes of evidence-based decision-making (Mandinach & Gummer, 2013). However,
as much as anything it is the responsibility of software engineers and user interface
designers to create environments where it is not necessary to understand obscure statistical
formulae because salient information about learning is presented in elegant visualizations,
and because it is always possible to drill down to retrace specific learning sequences
(Worsley & Blikstein, 2014). This data can also be presented to students, both in recursive
feedback or formative assessment systems, and progress overviews. Then the student too,
will be positioned as a researcher of sorts—of their own learning. Moreover, this is the
same embedded data a researcher can use. With big data, traditional researcher/prac-
titioner and observer/subject positions are blurred. This is not a feature of the data per
se, but highlights a dimension of accessibility that to some degree also determines the
shape, form and purpose of the data.

Conclusions

Big data has come to school. Or at least if the hardware has not yet been delivered, it is on
its way and the rudiments of the software can be seen in the range of new educational tech-
nologies and pedagogical practices described in this article. However, we have a long way
to go to develop software and pedagogies adequate to its promise. On which subject, we
need to make a declaration of interest. Since 2009, with the support of a series of research
and development grants from the Institute of Education Sciences1 and the Bill and
Melinda Gates Foundation, we have built a big data environment called Scholar,
capable of collecting evidence and serving analytics data from perhaps a million semanti-
cally legible datapoints for a single student in their middle or high school experience; or in
a class in a term; or a school in a week. It has been a big learning journey, and we have
barely begun, but that is another story (Cope & Kalantzis, 2013).

There are also potential dangers in the world of big data. Some educational technologies
may intensify and ossify old didactic pedagogies. Testing technologies may further institu-
tionalize the mechanisms of social inequality written into norm-based assessment, no
matter how efficient they now are (Cope & Kalantzis, in press). We also need protocols
to assure users that data pervasively collected incidental to their everyday learning activi-
ties, will be used for their benefit, and not their detriment—for instance, to discriminate
through profiling (Podesta et al., 2014).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Note

1. US Department of Education Institute of Education Sciences: ‘The Assess-as-You-Go Writing
Assistant: a student work environment that brings together formative and summative assessment’

210 Bill Cope & Mary Kalantzis

D
ow

nl
oa

de
d 

by
 [

20
6.

22
1.

14
5.

24
2]

 a
t 0

8:
57

 1
4 

Se
pt

em
be

r 
20

15
 



(R305A090394); ‘Assessing Complex Performance: A Postdoctoral Training Program Research-
ing Students’Writing and Assessment in Digital Workspaces’ (R305B110008); ‘u-Learn.net: An
Anywhere/Anytime Formative Assessment and Learning Feedback Environment’ (ED-IES-10-
C-0018); ‘The Learning Element: A Lesson Planning and Curriculum Documentation Tool
for Teachers’ (ED-IES-lO-C-0021); and ‘InfoWriter: A Student Feedback and Formative
Assessment Environment for Writing Information and Explanatory Texts’ (ED-IES-13-C-
0039). Scholar is located at http://CGScholar.com
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